
[image: image1.png]OASIS)

Web Services Security
Rights Expression Language (REL) Token Profile 1.1
Committee Specification: 14 November 2005
OASIS identifier:

wss-v1.1-spec-cs-REL-token-profile
Document Location:
http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.1.pdf
Errata Location:

http://www.oasis-open.org/committees/wss

Technical Commitee:
Web Services Security (WSS)
Chairs:
Kelvin Lawrence, IBM
Chris Kaler, Microsoft
Editors:
Thomas DeMartini, ContentGuard, Inc.

Anthony Nadalin, IBM

Chris Kaler, Microsoft

Ronald Monzillo, Sun

Phillip Hallam-Baker, Verisign
Abstract:

This document describes how to use ISO/IEC 21000-5 Rights Expressions with the Web Services Security (WSS) specification.

Status:

The status of this document is Committee Specification. Please send comments to the editors.

If you are on the wss@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the wss-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to wss-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.
For patent disclosure information that may be essential to the implementation of this specification, and any offers of licensing terms, refer to the Intellectual Property Rights section of the OASIS Web Services Security Technical Committee (WSS TC) web page at http://www.oasis-open.org/committees/wss/ipr.php. General OASIS IPR information can be found at http://www.oasis-open.org/who/intellectualproperty.shtml.
Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002-2005. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights.
Table of Contents

51
Introduction (Informative)

62
Notations and Terminology (Normative)

62.1
Notational Conventions

62.2
Namespaces

72.3
Terminology

83
Usage (Normative)

83.1
Token Types

83.2
Processing Model

83.3
Attaching Security Tokens

83.4
Identifying and Referencing Security Tokens

123.5
Authentication

123.5.1
<r:keyHolder> Principal

143.6
Confidentiality

153.6.1
<r:keyHolder> Principal

163.7
Error Codes

174
Types of Licenses (Informative)

174.1
Attribute Licenses

184.2
Sender Authorization

184.3
Issuer Authorization

215
Threat Model and Countermeasures (Informative)

215.1
Eavesdropping

215.2
Replay

225.3
Message Insertion

225.4
Message Deletion

225.5
Message Modification

225.6
Man-in-the-Middle

236
References

24Appendix A: Acknowledgements

27Appendix B: Revision History

1 Introduction (Informative)
The Web Services Security: SOAP Message Security [WS-Security] specification proposes a standard set of SOAP extensions that can be used when building secure Web services to implement message level integrity and confidentiality. This specification describes the use of ISO/IEC 21000-5 Rights Expressions with respect to the WS-Security specification.

2 Notations and Terminology (Normative)
This section specifies the notations, namespaces, and terminology used in this specification.

2.1 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [KEYWORDS].

Namespace URIs (of the general form "some-URI") represent some application-dependent or context-dependent URI as defined in [URI].

This specification is designed to work with the general SOAP message structure and message processing model, and should be applicable to any version of SOAP. The current SOAP 1.2 namespace URI is used herein to provide detailed examples, but there is no intention to limit the applicability of this specification to a single version of SOAP.
2.2 Namespaces

The following namespaces are used in this document:

	Prefix
	Namespace

	S
	http://www.w3.org/2003/05/soap-envelope

	ds
	http://www.w3.org/2000/09/xmldsig#

	xenc
	http://www.w3.org/2001/04/xmlenc#

	wsse
	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

	wsse11
	http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd

	wsu
	http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

	r
	urn:mpeg:mpeg21:2003:01-REL-R-NS

	sx
	urn:mpeg:mpeg21:2003:01-REL-SX-NS

Table 1 Namespace Prefixes

2.3 Terminology

This specification employs the terminology defined in the Web Services Security: SOAP Message Security [WS-Security] Specification.

Defined below are the basic definitions for additional terminology used in this specification.

License – ISO/IEC 21000-5 Rights Expression

3 Usage (Normative)
This section describes the syntax and processing rules for the use of licenses with the Web Services Security: Soap Message Security specification [WS-Security].

3.1 Token Types

When a URI value is used to indicate a license according to this profile, its value MUST be http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.0.pdf#license.
Note: This URI is for both the ValueType and TokenType attributes. It is also for use by any elements or attributes that require a token type URI and are defined in another specification taking advantage of REL Tokens.
3.2 Processing Model

The processing model for WS-Security with licenses is no different from that of WS-Security with other token formats as described in Web Services Security: SOAP Message Security [WS-Security].

At the token level, a processor of licenses MUST conform to the required validation and processing rules defined in ISO/IEC 21000-5 [REL].
3.3 Attaching Security Tokens

Licenses are attached to SOAP messages using WS-Security by placing the license element inside the <wsse:Security> header. The following example illustrates a SOAP message with a license.

<S:Envelope xmlns:S="...">

 <S:Header>

 <wsse:Security xmlns:wsse="...">

 <r:license xmlns:r="...">

 ...

 </r:license>

 ...

 </wsse:Security>

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

3.4 Identifying and Referencing Security Tokens

The Web Services Security: SOAP Message Security [WS-Security] specification defines the wsu:Id attribute as the common mechanism for identifying security tokens (the specification describes the reasons for this). Licenses have an additional identification mechanism available: their licenseId attribute, the value of which is a URI. The following example shows a license that uses both mechanisms:

<r:license xmlns:r="..." xmlns:wsu="..."

 licenseId="urn:foo:SecurityToken:ef375268"

 wsu:Id="SecurityToken-ef375268">
 ...
</r:license>

Licenses can be referenced either according to their location or their licenseId. Location references are dependent on location and can be either local or remote. LicenseId references are not dependent on location.
Local location references are RECOMMENDED when they can be used. Remote location references are OPTIONAL for cases where it is not feasible to transmit licenses with the SOAP message. LicenseId references are OPTIONAL for cases where location is unknown or cannot be indicated.

WS-Security specifies that tokens are referenced using the <wsse:SecurityTokenReference> element.

Implementations compliant with this profile SHOULD set the /wsse:SecurityTokenReference/wsse:Reference/@ValueType attribute to http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.0.pdf#license when using wsse:SecurityTokenReference to refer to a license by licenseId. This is OPTIONAL when referring to a license by location.

The following table demonstrates the use of the <wsse:SecurityTokenReference> element to refer to licenses.

	By Location
	Local
	<wsse:SecurityTokenReference>

 <wsse:Reference

 URI="#SecurityToken-ef375268"

 />

</wsse:SecurityTokenReference>

	
	Remote
	<wsse:SecurityTokenReference>

 <wsse:Reference

 URI="http://www.foo.com/ef375268.xml"

 />

</wsse:SecurityTokenReference>

	By licenseId
	<wsse:SecurityTokenReference>

 <wsse:Reference

 URI="urn:foo:SecurityToken:ef375268"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.0.pdf#license"

 />

</wsse:SecurityTokenReference>

Table 2. <wsse:SecurityTokenReference>

The following example demonstrates how a <wsse:SecurityTokenReference> can be used to indicate that the message parts specified inside the <ds:SignedInfo> element were signed using a key from the license referenced by licenseId in the <ds:KeyInfo> element.

<S:Envelope xmlns:S="..." xmlns:ds="...">
 <S:Header>
 <wsse:Security xmlns:wsse="...">
 <r:license xmlns:r="..." licenseId="urn:foo:SecurityToken:ef375268" xmlns:wsu="..." wsu:Id="SecurityToken-ef375268">
 ...
 </r:license>

 ...
 <ds:Signature>

 <ds:SignedInfo>

 ...

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference

 URI="#SecurityToken-ef375268"

 />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>
 </S:Header>
 <S:Body>
 ...
 </S:Body>
</S:Envelope>
The following example shows a signature over a local license using a location reference to that license. The example demonstrates how the integrity of an (unsigned) license can be preserved by signing it in the <wsse:Security> header.

<S:Envelope xmlns:S="..." xmlns:wsu="..." >
 <S:Header>
 <wsse:Security xmlns:wsse="...">
 <r:license xmlns:r="..." wsu:Id="SecurityToken-ef375268">
 ...
 </r:license>

 ...
 <wsse:SecurityTokenReference wsu:Id="Str1">

 <wsse:Reference

 URI="#SecurityToken-ef375268"

 />

 </wsse:SecurityTokenReference>

 ...
 <ds:Signature>

 <ds:SignedInfo>

 ...

 <ds:Reference URI="#Str1">

 <ds:Transforms>

 <ds:Transform

 Algorithm="http://schemas.xmlsoap.org/2003/06/STR-Transform">

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"

 />

 <ds:DigestValue>...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>...</ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>
 </S:Header>
 <S:Body>
 ...
 </S:Body>
</S:Envelope>
Note: since licenses allow the use of the wsu:Id attribute, it is usually not necessary to use the STR-Transform because the license can be referred to directly in the ds:SignedInfo as shown in the following example:

<S:Envelope xmlns:S="..." xmlns:ds="...">
 <S:Header>
 <wsse:Security xmlns:wsse="...">
 <r:license xmlns:r="..." xmlns:wsu="..." wsu:Id="SecurityToken-ef375268">
 ...
 </r:license>

 ...
 <ds:Signature>

 <ds:SignedInfo>

 ...

 <ds:Reference URI="#SecurityToken-ef375268">

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"

 />

 <ds:DigestValue>...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>...</ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>
 </S:Header>
 <S:Body>
 ...
 </S:Body>
</S:Envelope>
3.5 Authentication
The Web Services Security: SOAP Message Security [WS-Security] specification does not dictate how claim confirmation must be performed. As well, the REL allows for multiple types of confirmation. This profile of WS-Security REQUIRES that message senders and receivers support claim confirmation for <r:keyHolder> principals. It is RECOMMENDED that an XML Signature be used to establish the relationship between the message sender and the claims. This is especially RECOMMENDED whenever the SOAP message exchange is conducted over an unprotected transport.

The following table enumerates the mandatory principals to be supported by claim confirmation and summarizes their associated processing models. It should be noted that this table is not all-encompassing, and it is envisioned that future specifications may expand this table over time.

	Principal
	RECOMMENDED Processing Rules

	<r:keyHolder>
	The message sender adds (to the security header) an XML Signature that can be verified with the key information specified in the <r:keyHolder> of the referenced license.

Table 3. Processing Rules for Claim Confirmation

Note that the high-level processing model described in the following sections does not differentiate between message author and message sender as would be necessary to guard against replay attacks. The high-level processing model also does not take into account requirements for authentication of receiver by sender or for message or token confidentiality. These concerns must be addressed by means other than those described in the high-level processing model. If confidentiality of the token in the message is important, then use the approach defined by [WS-Security] to encrypt the token.
3.5.1 <r:keyHolder> Principal

The following sections describe the <r:keyHolder> method of establishing the correspondence between a SOAP message sender and the claims within a license.

Sender

The message sender MUST include within the <wsse:Security> header element a <r:license> containing at least one <r:grant> to an <r:keyHolder> identifying the key to be used to confirm the claims. If the message sender includes an <r:license> containing more than one <r:grant> to an <r:keyHolder>, then all of those <r:keyHolder> elements MUST be equal.
In order for the receiver to perform claim confirmation, the sender MUST demonstrate knowledge of the confirmation key. The sender MAY accomplish this by using the confirmation key to sign content from within the message and by including the resulting <ds:Signature> element in the <wsse:Security> header element. <ds:Signature> elements produced for this purpose MUST conform to the canonicalization and token inclusion rules defined in the core WS-Security specification and this profile specification.

Licenses that contain at least one <r:grant> to an <r:keyHolder> SHOULD contain an <r:issuer> with a <ds:Signature> element that identifies the license issuer to the relying party and protects the integrity of the confirmation key established by the license issuer.

Receiver

If the receiver determines that the sender has demonstrated knowledge of a confirmation key as specified in an <r:keyHolder>, then the claims (found in the licenses) pertaining to that <r:keyHolder> MAY be attributed to the sender. If one of these claims is an identity and if the conditions of that claim are satisfied, then any elements of the message whose integrity is protected by the confirmation key MAY be considered to have been authored by that identity.

Example

The following example illustrates how a license security token having an <r:keyHolder> principal can be used with a <ds:Signature> to establish that John Doe is requesting a stock report on FOO.

<S:Envelope xmlns:S="...">
 <S:Header>
 <wsse:Security xmlns:wsse="...">
 <r:license xmlns:r="..." licenseId="urn:foo:SecurityToken:ef375268">

 <r:grant>

 <r:keyHolder>

 <r:info>

 <ds:KeyValue>...</ds:KeyValue>

 </r:info>

 </r:keyHolder>

 <r:possessProperty/>

 <sx:commonName xmlns:sx="...">John Doe</sx:commonName>

 </r:grant>

 <r:issuer>

 <ds:Signature>...</ds:Signature>

 </r:issuer>
 </r:license>

 <ds:Signature>

 <ds:SignedInfo>

 ...

 <ds:Reference URI="#MsgBody">

 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"

 />

 <ds:DigestValue>...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference

 URI="urn:foo:SecurityToken:ef375268"

 ValueType="http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.0.pdf#license"

 />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>
 </S:Header>
 <S:Body wsu:Id="MsgBody" xmlns:wsu="...">
 <ReportRequest>

 <TickerSymbol>FOO</TickerSymbol>

 </ReportRequest>
 </S:Body>
</S:Envelope>
3.6 Confidentiality

This section details how licenses may be used to protect the confidentiality of a SOAP message within WS-Security. The Web Services Security: SOAP Message Security [WS-Security] specification does not dictate how confidentiality must be performed. As well, the REL allows for multiple types of confidentiality. This profile of WS-Security REQUIRES that message senders and receivers support confidentiality for <r:keyHolder> principals. It is RECOMMENDED that XML Encryption be used to ensure confidentiality. This is especially RECOMMENDED whenever the SOAP message exchange is conducted over an unprotected transport.

The following table enumerates the mandatory principals to be supported for confidentiality and summarizes their associated processing models. It should be noted that this table is not all-encompassing, and it is envisioned that future specifications may expand this table over time.

	Principal
	RECOMMENDED Processing Rules

	<r:keyHolder>
	The message sender adds (to the security header) either 1) an <xenc:ReferenceList> that points to one or more <xenc:EncryptedData> elements that can be decrypted with a key which can be determined from information specified in the <r:keyHolder> of the referenced license or 2) an <xenc:EncryptedKey> that can be decrypted with a key determined from information specified in the <r:keyHolder> of the referenced license.

Table 4. Processing Rules for Confidentiality
Note that this section deals only with Confidentiality. Details of authentication of the sender by the receiver must be addressed by means other than those described in this section (see the previous section).
3.6.1 <r:keyHolder> Principal

The following sections describe the <r:keyHolder> method of establishing confidentiality using a license.

Sender

The message sender MUST include within the <wsse:Security> header element a <r:license> containing at least one <r:grant> to an <r:keyHolder> identifying the key used to encrypt some data or key. If the message sender includes an <r:license> containing more than one <r:grant> to an <r:keyHolder>, then all of those <r:keyHolder> elements MUST be equal.
In order for the receiver to know when to decrypt the data or key, the sender MUST indicate the encryption in the message. The sender MAY accomplish this by placing an <xenc:EncryptedData> or <xenc:EncryptedKey> in the appropriate place in the message and by including the resulting <xenc:ReferenceList> or <xenc:EncryptedKey> element in the <wsse:Security> header element. <xenc:ReferenceList> or <xenc:EncryptedKey> elements produced for this purpose MUST conform to the rules defined in the core WS-Security specification and this profile specification.

Receiver

If the receiver determines that he has knowledge of a decryption key as specified in an <r:keyHolder>, then he MAY decrypt the associated data or key. In the case of decrypting a key, he may then recursively decrypt any data or key that that key can decrypt.
Example

The following example illustrates how a license containing a <r:keyHolder> principal can be used with XML encryption schema elements to protect the confidentiality of a message using a separate encryption key given in the <xenc:EncryptedKey> in the security header.

In this example, the r:license element provides information about the recipient's RSA public key (i.e., KeyValue in keyHolder) used to encrypt the symmetric key carried in the EncryptedKey element. The recipient uses this information to determine the correct private key to use in decrypting the symmetric key. The symmetric key is then used to decrypt the EncryptedData child of the Body element.

<S:Envelope xmlns:S="..." xmlns:ds="...">

 <S:Header>

 <wsse:Security xmlns:wsse="...">

 <r:license xmlns:r="..." licenseId="urn:foo:SecurityToken:ef375268">

<r:grant>

 <r:keyHolder>

<r:info>

 <ds:KeyValue>...</ds:KeyValue>

 </r:info>

 </r:keyHolder>

 <r:possessProperty/>

 <sx:commonName xmlns:sx="...”>SOME COMPANY</sx:commonName>

</r:grant>

<r:issuer>

 <ds:Signature>...</ds:Signature>

</r:issuer>

 </r:license>

 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

<wsse:Reference URI="urn:foo:SecurityToken:ef375268"/>

</wsse:SecurityTokenReference>

 </KeyInfo>

 <xenc:CipherData>

<xenc:CipherValue>dNYS...fQ=</xenc:CipherValue>

 </xenc:CipherData>

 <xenc:ReferenceList>

<xenc:DataReference URI="#enc"/>

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

</wsse:Security>

 </S:Header>

<S:Body wsu:Id="body"

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

 <xenc:EncryptedData Id="enc"

 Type="http://www.w3.org/2001/04/xmlenc#Content"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <xenc:CipherData>

 <xenc:CipherValue>d2s...GQ=</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

</S:Body>

</S:Envelope>

3.7 Error Codes

It is RECOMMENDED that the error codes defined in the Web Services Security: SOAP Message Security [WS-Security] specification are used. However, implementations MAY use custom errors, defined in private namespaces if they desire. Care should be taken not to introduce security vulnerabilities in the errors returned.

4 Types of Licenses (Informative)

4.1 Attribute Licenses
In addition to key information, licenses can carry information about attributes of those keys. Examples of such information on a client are e-mail address or common name. A service's key, on the other hand, might be associated with a DNS name and common name.

The following is an example client attribute license.

 <r:license xmlns:r="..." xmlns:ds="..." licenseId="urn:foo:SecurityToken:ef375268">

 <r:inventory>

 <r:keyHolder licensePartId="client">

 <r:info>

 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>

 </r:info>

 </r:keyHolder>

 </r:inventory>

 <r:grant>

 <r:keyHolder licensePartIdRef="client"/>

 <r:possessProperty/>

 <sx:commonName>John Doe</sx:commonName>

 </r:grant>

 <r:grant>

 <r:keyHolder licensePartIdRef="client"/>

 <r:possessProperty/>

 <sx:emailName>jd@foo.com</sx:emailName>

 </r:grant>

 <r:issuer>

 <ds:Signature>...</ds:Signature>

 </r:issuer>

 </r:license>

The following is an example service attribute license.

 <r:license xmlns:r="..." xmlns:ds="..." licenseId="urn:foo:SecurityToken:ef375268">

 <r:inventory>

 <r:keyHolder licensePartId="service">

 <r:info>

 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>

 </r:info>

 </r:keyHolder>

 </r:inventory>

 <r:grant>

 <r:keyHolder licensePartIdRef="service"/>

 <r:possessProperty/>

 <sx:commonName>MyService Company</sx:commonName>

 </r:grant>

 <r:grant>

 <r:keyHolder licensePartIdRef="service"/>

 <r:possessProperty/>

 <sx:dnsName>www.myservice.com</sx:dnsName>

 </r:grant>

 <r:issuer>

 <ds:Signature>...</ds:Signature>

 </r:issuer>

 </r:license>

Additional examples of and processing rules for the use of attribute licenses can be found in the above sections on Authentication and Confidentiality.

4.2 Sender Authorization

Licenses may be used by a sender as proof of authorization to perform a certain action on a particular resource. This WS-Security specification does not describe how authorization must be performed. In the context of web services, a sender can send to a receiver an authorization license in the security header as proof of authorization to call the sender. Typically, this authorization license is signed by a trusted authority and conforms to the syntax pattern specified below.
<r:license xmlns:r="..." licenseId="urn:foo:SecurityToken:ef375268">

 <r:grant>

 <r:keyHolder>

 <r:info>

 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>

 </r:info>

 </r:keyHolder>

 <sx:rightUri definition=’...’/>

 <x:someResource/>

 <x:someCondition/>
 </r:grant>

 <r:issuer>

 <ds:Signature>...</ds:Signature>

 </r:issuer>

 </r:license>

The above license contains an authorization grant authorizing the keyholder (sender’s public key), the right to exercise the right identified in the <sx:rightUri> element. The resource in the license typically corresponds to the semantics of the URI given in the definition attribute of the <sx:rightUri> element. The entire license along with the <ds:Signature> element in the <r:issuer> certifies the fact that the principal (<keyholder>) is granted the authorization to exercise the right in the <sx:rightUri> element over the specified resource. The integrity of the license is usually protected with a digital signature contained within the <ds:Signature>.
4.3 Issuer Authorization

To enunciate that a particular issuer is allowed to issue particular types of licenses, one can use the kind of license described here. Issuer authorization licenses can accompany other licenses in the security header such as those used for authentication, sender authorization, or other issuer authorizations. These issuer authorization licenses might help complete the authorization proof that is required for authorizing or authenticating a particular sender.

The following license is an example issuer authorization license for authorizing an issuer to issue a simple attribute license.

<r:license xmlns:r="..." licenseId="urn:foo:SecurityToken:ef375268">

 <r:grant>

 <r:forAll varName=’K’/>

 <r:forAll varName=’P’/>

 <r:keyHolder>

 <r:info>

 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>

 </r:info>

 </r:keyHolder>

 <r:issue/>

 <r:grant>

 <r:keyHolder varRef=’K’/>

 <r:possessProperty/>

 <r:propertyAbstract varRef=’P’/>

 </r:grant>
 </r:grant>

 <r:issuer>

 <ds:Signature>...</ds:Signature>

 </r:issuer>

 </r:license>

The following license is an example issuer authorization license for authorizing an issuer to issue sender authorization licenses.
<r:license xmlns:r="..." licenseId="urn:foo:SecurityToken:ef375268">

 <r:grant>

 <r:forAll varName=’K’/>

 <r:forAll varName=’R’/>

 <r:keyHolder>

 <r:info>

 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>

 </r:info>

 </r:keyHolder>

 <r:issue/>

 <r:grant>

 <r:keyHolder varRef=’K’/>

 <sx:rightUri definition=’...’/>

 <r:resource varRef=’R’/>

 </r:grant>

 </r:grant>

 <r:issuer>

 <ds:Signature>...</ds:Signature>

 </r:issuer>

 </r:license>

The following license is an example issuer authorization license for authorizing an issuer to issue (to other issuers) issuer authorization licenses allowing those other issuers to issue simple attribute licenses, such as those that can be used for authentication or confidentiality.

<r:license xmlns:r="..." licenseId="urn:foo:SecurityToken:ef375268">

 <r:grant>

 <r:forAll varName=’I’/>

 <r:keyHolder>

 <r:info>

 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>

 </r:info>

 </r:keyHolder>

 <r:issue/>

 <r:grant>

 <r:forAll varName=’K’/>

 <r:forAll varName=’P’/>

 <r:keyHolder varRef=’I’/>

 <r:issue/>

 <r:grant>

 <r:keyHolder varRef=’K’/>

 <r:possessProperty/>

 <r:propertyAbstract varRef=’P’/>

 </r:grant>
 </r:grant>

 </r:grant>

 <r:issuer>

 <ds:Signature>...</ds:Signature>

 </r:issuer>

 </r:license>

5 Threat Model and Countermeasures (Informative)
This section addresses the potential threats that a SOAP message may encounter and the countermeasures that may be taken to thwart such threats. A SOAP message containing licenses may face threats in various contexts. This includes the cases where the message is in transit, being routed through a number of intermediaries, or during the period when the message is in storage.

The use of licenses with WS-Security introduces no new threats beyond those identified for the REL or WS-Security with other types of security tokens. Message alteration and eavesdropping can be addressed by using the integrity and confidentiality mechanisms described in WS-Security. Replay attacks can be addressed by using of message timestamps and caching, as well as other application-specific tracking mechanisms. For licenses, ownership is verified by the use of keys; man-in-the-middle attacks are generally mitigated. It is strongly RECOMMENDED that all relevant and immutable message data be signed. It should be noted that transport-level security MAY be used to protect the message and the security token. In order to trust licenses, they SHOULD be signed natively and/or using the mechanisms outlined in WS-Security. This allows readers of the licenses to be certain that the licenses have not been forged or altered in any way. It is strongly RECOMMENDED that the <r:license> elements be signed (either within the token, as part of the message, or both).

The following few sections elaborate on the afore-mentioned threats and suggest countermeasures.

5.1 Eavesdropping

Eavesdropping is a threat to the confidentiality of the message, and is common to all types of network protocols. The routing of SOAP messages through intermediaries increases the potential incidences of eavesdropping. Additional opportunities for eavesdropping exist when SOAP messages are persisted.

To provide maximum protection from eavesdropping, licenses, license references, and sensitive message content SHOULD be encrypted such that only the intended audiences can view their content. This removes threats of eavesdropping in transit, but does not remove risks associated with storage or poor handling by the receiver.

Transport-layer security MAY be used to protect the message from eavesdropping while in transport, but message content must be encrypted above the transport if it is to be protected from eavesdropping by intermediaries.

5.2 Replay

The reliance on authority protected (e.g. signed) licenses to <r:keyHolder> principals precludes all but the key holder from binding the licenses to a SOAP message. Although this mechanism effectively restricts message authorship to the holder of the confirmation key, it does not preclude the capture and resubmission of the message by other parties.

Replay attacks can be addressed by using message timestamps and caching, as well as other application-specific tracking mechanisms.

5.3 Message Insertion

This profile of WS-Security is not vulnerable to message insertion attacks. Higher-level protocols built on top of SOAP and WS-Security should avoid introducing message insertion threats and provide proper countermeasures for any they do introduce.

5.4 Message Deletion

This profile of WS-Security is not vulnerable to message deletion attacks other than denial of service. Higher-level protocols built on top of SOAP and WS-Security should avoid introducing message deletion threats and provide proper countermeasures for any they do introduce.

5.5 Message Modification

Message Modification poses a threat to the integrity of a message. The threat of message modification can be thwarted by signing the relevant and immutable content by the key holder. The receivers SHOULD only trust the integrity of those segments of the message that are signed by the key holder.

To ensure that message receivers can have confidence that received licenses have not been forged or altered since their issuance, licenses appearing in <wsse:Security> header elements SHOULD be integrity protected (e.g. signed) by their issuing authority. It is strongly RECOMMENDED that a message sender sign any <r:license> elements that it is confirming and that are not signed by their issuing authority.

Transport-layer security MAY be used to protect the message and contained licenses and/or license references from modification while in transport, but signatures are required to extend such protection through intermediaries.

5.6 Man-in-the-Middle

This profile of WS-Security is not vulnerable to man-in-the-middle attacks. Higher-level protocols built on top of SOAP and WS-Security should avoid introducing Man-in-the-Middle threats and provide proper countermeasures for any they do introduce.

6 References

[KEYWORDS]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, Harvard University, March 1997, http://www.ietf.org/rfc/rfc2119.txt
[REL]
ISO/IEC 21000-5:2004, "Information technology -- Multimedia framework (MPEG-21) -- Part 5: Rights Expression Language," http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36095&ICS1=35&ICS2=40&ICS3=
[SOAP]
D. Box, D Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Frystyk Nielsen, S Thatte, D. Winer. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000, http://www.w3.org/TR/SOAP/

W3C Recommendation, "SOAP Version 1.2 Part 1: Messaging Framework", 23 June 2003
[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998, http://www.ietf.org/rfc/rfc2396.txt

T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax," RFC 3986, MIT/LCS, Day Software, Adobe Systems, January 2005, http://www.ietf.org/rfc/rfc3986.txt.
[WS-Security]
OASIS Standard 200401, "Web Services Security: Soap Message Security 1.0 (WS-Security 2004)," March 2004, http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

OASIS Standard, "Web Services Security: Soap Message Security 1.1 (WS-Security 2004)," November 2005, http://docs.oasis-open.org/wss/ oasis-wss-soap-message-security-1.1.pdf
[XML-ns]
T. Bray, D. Hollander, A. Layman. Namespaces in XML. W3C Recommendation. January 1999, http://www.w3.org/TR/1999/REC-xml-names-19990114
[XML Signature]
D. Eastlake, J. R., D. Solo, M. Bartel, J. Boyer , B. Fox , E. Simon. XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002.
Appendix A: Acknowledgements

Current Contributors:
	Michael
	Hu
	Actional

	Maneesh
	Sahu
	Actional

	Duane
	Nickull
	Adobe Systems

	Gene
	Thurston
	AmberPoint

	Frank
	Siebenlist
	Argonne National Laboratory

	Hal
	Lockhart
	BEA Systems

	Denis
	Pilipchuk
	BEA Systems

	Corinna
	Witt
	BEA Systems

	Steve
	Anderson
	BMC Software

	Rich
	Levinson
	Computer Associates

	Thomas
	DeMartini
	ContentGuard

	Merlin
	Hughes
	Cybertrust

	Dale
	Moberg
	Cyclone Commerce

	Rich
	Salz
	Datapower

	Sam
	Wei
	EMC

	Mark
	Hayes
	formerly of VeriSign

	Dana S.
	Kaufman
	Forum Systems

	Toshihiro
	Nishimura
	Fujitsu

	Kefeng
	Chen
	GeoTrust

	Irving
	Reid
	Hewlett-Packard

	Kojiro
	Nakayama
	Hitachi

	Paula
	Austel
	IBM

	Derek
	Fu
	IBM

	Maryann
	Hondo
	IBM

	Kelvin
	Lawrence
	IBM

	Michael
	McIntosh
	IBM

	Anthony
	Nadalin
	IBM

	Nataraj
	Nagaratnam
	IBM

	Bruce
	Rich
	IBM

	Ron
	Williams
	IBM

	Don
	Flinn
	Individual

	Paul
	Cotton
	Microsoft

	Vijay
	Gajjala
	Microsoft

	Martin
	Gudgin
	Microsoft

	Chris
	Kaler
	Microsoft

	Frederick
	Hirsch
	Nokia

	Abbie
	Barbir
	Nortel

	Vamsi
	Motukuru
	Oracle

	Prateek
	Mishra
	Principal Identity

	Ben
	Hammond
	RSA Security

	Rob
	Philpott
	RSA Security

	Blake
	Dournaee
	Sarvega

	Sundeep
	Peechu
	Sarvega

	Pete
	Wenzel
	SeeBeyond

	Manveen
	Kaur
	Sun Microsystems

	Ronald
	Monzillo
	Sun Microsystems

	Jan
	Alexander
	Systinet

	Symon
	Chang
	TIBCO Software

	John
	Weiland
	US Navy

	Hans
	Granqvist
	VeriSign

	Phillip
	Hallam-Baker
	VeriSign

	Hemma
	Prafullchandra
	VeriSign

Previous Contributors:
	Peter
	Dapkus
	BEA

	Guillermo
	Lao
	ContentGuard

	TJ
	Pannu
	ContentGuard

	Xin
	Wang
	ContentGuard

	Shawn
	Sharp
	Cyclone Commerce

	Ganesh
	Vaideeswaran
	Documentum

	John
	Hughes
	Entegrity

	Tim
	Moses
	Entrust

	Carolina
	Canales-Valenzuela
	Ericsson

	Davanum
	Srinivas
	formerly of Computer Associates

	Tom
	Rutt
	Fujitsu

	Yutaka
	Kudo
	Hitachi

	Jason
	Rouault
	HP

	Bob
	Blakley
	IBM

	Joel
	Farrell
	IBM

	Satoshi
	Hada
	IBM

	Hiroshi
	Maruyama
	IBM

	David
	Melgar
	IBM

	Kent
	Tamura
	IBM

	Wayne
	Vicknair
	IBM

	Phil
	Griffin
	Individual

	Bob
	Morgan
	Individual/Internet2

	Kate
	Cherry
	Lockheed Martin

	Bob
	Atkinson
	Microsoft

	Keith
	Ballinger
	Microsoft

	Allen
	Brown
	Microsoft

	Giovanni
	Della-Libera
	Microsoft

	Alan
	Geller
	Microsoft

	Johannes
	Klein
	Microsoft

	Scott
	Konersmann
	Microsoft

	Chris
	Kurt
	Microsoft

	Brian
	LaMacchia
	Microsoft

	Paul
	Leach
	Microsoft

	John
	Manferdelli
	Microsoft

	John
	Shewchuk
	Microsoft

	Dan
	Simon
	Microsoft

	Hervey
	Wilson
	Microsoft

	Jeff
	Hodges
	Neustar/Sun

	Senthil
	Sengodan
	Nokia

	Lloyd
	Burch
	Novell

	Ed
	Reed
	Novell

	Charles
	Knouse
	Oblix

	Vipin
	Samar
	Oracle

	Jerry
	Schwarz
	Oracle

	Eric
	Gravengaard
	Reactivity

	Stuart
	King
	Reed Elsevier

	Andrew
	Nash
	RSA Security

	Peter
	Rostin
	RSA Security

	Martijn
	de Boer
	SAP

	Jonathan
	Tourzan
	Sony

	Yassir
	Elley
	Sun

	Michael
	Nguyen
	The IDA of Singapore

	Don
	Adams
	TIBCO

	Morten
	Jorgensen
	Vordel

Appendix B: Revision History
	Rev
	Date
	What

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Copyright © 2002 OASIS. All rights reserved.

Page 18 of 27
18
WSS Rights Expression Language Token Profile

14 November 2005
Copyright © OASIS Open 2002-2005. All Rights Reserved.
Page 1 of 27

