
Article Title | Article Author

2626

ISSA The Global Voice of Information Security

Symmetric Key Management
Systems
By Arshad Noor

The time has come for the infosec community to address Symmetric Key Management

Systems as an application-independent, enterprise-level defense mechanism.

Most security professionals are familiar with symmetric
key-based cryptography when presented with terms
such as Data Encryption Standard (DES), Triple DES

(3DES) and the Advanced Encryption Standard (AES). Some are
also familiar with Public Key Infrastructure (PKI) as an enterprise-
level solution for managing the life-cycle of digital certificates used
with asymmetric-key cryptography. However, the term Symmetric
Key Management System (SKMS) – which refers to the discipline
of securely generating, escrowing, managing, providing access to,
and destroying symmetric encryption keys – will almost always
draw blank stares. This is not surprising, because symmetric en-
cryption key management has traditionally been buried in applica-
tions performing encryption. These applications primarily focused
on business functions, but managed encryption keys as an ancil-
lary function. Consequently, there was no reason to emphasize key
management. This article advances the notion that the time has
come for the infosec community to address SKMS as an applica-
tion-independent, enterprise-level defense mechanism that is more
effective when addressed separately.

While encryption has been in use for centuries�, computer-based
cryptography entered the general computing field with the advent of
the DES algorithm. The primary business uses for this technology
was within the military, and later banking. Given the nature of what
encryption technology was protecting, implementers were willing to
live with custom key-management solutions, however contrived they
may have been. With the explosion of the World Wide Web, busi-
nesses have been racing to implement business processes on the In-
ternet, bringing sensitive information significantly closer to attacks.

� History of cryptography. http://en.wikipedia.org/wiki/History_of_cryptography

Although businesses have invested billions in firewalls, intrusion de-
tectors, intrusion prevention systems and other defense mechanisms,
the US has witnessed more than 300 breach disclosures� since the
passage of California’s Breach Disclosure law3. One recent disclosure
was from the University of California in Los Angeles (UCLA)�.
This is the seventh� breach disclosure by the University of California
across all schools in the UC system, and it reflects a situation com-
pletely out of control. Breaches at retailers such as Ralph Lauren,
BJ’s, DSW and credit card processing companies such as CardSys-
tems Solutions have prompted credit card giants Visa, Mastercard,
American Express and Discover to standardize on security require-
ments for merchants and card-acquirers through the Payment Card
Industry’s Data Security Standard (PCI-DSS)�. One critical element
required within PCI-DSS is the encryption of credit card numbers
and a robust key management system to accompany encryption.

Rationale
Why is symmetric key management a problem? After all, applica-
tions seem to have addressed the problem within the applications for
decades, and appear to be continuing to do so. The problem becomes
obvious if you are in IT Operations. As an illustration, if you are re-
sponsible for managing a point-of-sale (POS) application that accepts

� A chronology of data breaches. http://www.privacyrights.org/ar/ChronDataBreaches.htm

3 California’s Senate Bill �38�. http://www.strongauth.com/regulations/sb�38�/sb�38�Index.
html

� Breach at UCLA exposes data on 800,000. http://www.computerworld.com/action/article.
do?command=viewArticleBasic&articleId=900�9��

� SB�38� Disclosures of Breaches to PII. http://www.strongauth.com/regulations/sb�38�/sb-
�38�Disclosures.html

� PCI Security Standards Council. https://www.pcisecuritystandards.org/index.htm

ISSA Journal | February 2007

27

ers. (While they are referred to as clients, the client software may
themselves be database servers, web servers, application servers and/
or any business application.) The XML-based protocol between the
SKCL and the SKS servers, known as the Symmetric Key Services
Markup Language (SKSML), has a technical committee (open to
anyone) that formed recently at OASIS to consider standardizing
this protocol on a royalty-free basis8.

Each SKS server consists of:

A server-class computer running an operating system – typi-
cally Linux, UNIX or Windows – that has a compliant Java
Virtual Machine (JVM) available for it

A relational database that serves as the storehouse for the
symmetric encryption keys

A J�EE-compliant application server to respond to requests
over the network, serving as the workhorse of the SKMS

A JCE-compliant cryptographic provider to perform the
cryptographic operations of key generation, key protection,
digital signing, verification, etc.

An optional, but strongly recommended, Hardware Secu-
rity Module (HSM) or Trusted Platform Module (TPM)
for securely storing the cryptographic keys that protect the
database’s contents

The SKS server software itself, consisting of an Enterprise
Archive (EAR) and a Web archive (WAR) file for the ad-
ministration console, along with ancillary utilities

Each SKCL client platform consists of:

A client machine running an operating system – once
again, typically Linux, UNIX or Windows, but includes the
OS/�00 – that has a compliant Java Virtual Machine (JVM)
available for it

A JCE-compliant cryptographic provider to perform the
cryptographic operations of encryption, decryption, digital
signing, verification, etc.

An optional, but highly recommended, Trusted Platform
Module (TPM), smartcard or other USB-based crypto-
graphic token for securely storing the cryptographic keys
that protect the clients’ authentication credentials

The SKCL software itself, consisting of an API callable by
Java applications for communicating with the SKS server
and performing cryptographic functions (non-Java applica-
tions have the option of either using a Java Native Interface
(JNI) library to call the SKCL, or communicating with the
SKS server directly using the SKSML protocol)

The SKSML protocol itself is extremely simple, and consists of:

A call from the client to request a symmetric key – new or
existing – from the SKS server

A call from the client to request key-caching policy informa-
tion from the SKS server

A response from the SKS server containing the symmetric
key and the key's use policy

A response from the SKS server containing the key-caching
policy

8 OASIS Enterprise Key Management Infrastructure Technical Committee. http://www.oa-
sis-open.org/committees/tc_home.php?wg_abbrev=ekmi

•

•

•

•

•

•

•

•

•

•

•

•

•

•

credit cards for payment, an e-commerce application that requires
credit cards for payment, a payment processing application that com-
municates with the credit card network for settling transactions, a
back-office database that consolidates transactions, and a business
analytics application for determining retail fraud, you have five ap-
plications that require encryption.

In addition, with the proliferation of laptop and PDA losses and
thefts, companies are now mandating encryption on these devices,
adding one or two more key-management schemes to the infrastruc-
ture. Add database and operating system-specific encryption to the
mix, and you round out the picture with at least 8 to �0 key-manage-
ment infrastructures.

Since applications are typically purchased from multiple vendors,
each vendor, focusing primarily on its own business application,
implements encryption and performs key-management functions
using its own design. As a result, the IT Operations staff are forced
to manage at least 8 to �0 distinct symmetric key-management infra-
structures, each with its own technology, training, documentation,
procedures and audits. (PCI-DSS regulated entities are required to
perform annual audits of any system that stores credit cards.) Not
only does this border on the ridiculous, more importantly, it raises
total cost of ownership (TCO). One might even argue the potential
danger of a vulnerability in the security strategy, because, with so
many pots cooking on the stove, something could get burned.

Solution
Presented with the problem in this perspective, the logical solu-
tion springs to clarity: the key-management capability needs to be
abstracted from the applications that use it. Such a solution is not
unlike the Domain Name System (DNS) for hostname-IP address
resolution, or a Relational Database Management System (RDBMS)
for data management.

In �00� an open-source software product was released on the Inter-
net that struck at the heart of this problem�. Architected along the
lines of DNS, the completely free software abstracts symmetric key-
management functions from applications and consolidates them on
one or more centralized Symmetric Key Services (SKS) servers on
the network. Using a client-side API, applications on most platforms
can make requests for symmetric key services without knowing the
semantics of symmetric key management. Designed to be extremely
secure, the SKMS architecture also allows for business continuity in
the face of network failures, massive scalability and the use of many
well-understood technical standards.

Architecture
An SKMS, as defined within the context of this architecture, con-
sists of at least two centralized SKS servers – a primary and a disaster
recovery server – and any number of clients using the Symmetric
Key Client Library (SKCL) to request services from the SKS serv-

� StrongKey. http://www.strongkey.org

Symmetric Key Management Systems | Arshad Noor

With the proliferation of laptop and PDA
losses and thefts, companies are now

mandating encryption on these devices.

ISSA Journal | February 2007

28

to use the SKCL for the actual encryption/decryption operations, it
is expected to use the key in conformance with the embedded Key-
UsePolicy.

If any of the local checks result in no valid symmetric key being avail-
able for use, the SKCL creates a new symmetric-key request, digi-
tally signs it with its authentication credentials, and sends the request
to one of its pre-configured SKS servers as an OASIS Web Services
Security (WSS)-compliant SOAP request. It is noteworthy to men-
tion here, that since all requests and responses between the SKCL
and the SKS servers are secured (digitally signed and encrypted) at
the message level, transport-level security (SSL/TLS or IPSec) is not
required for the operations of the SKMS; plain old HTTP is suffi-
cient. Administration console communications, however, do rely on
mutually authenticated SSL/TLS sessions.

The SKS server, upon receiving such a request, verifies the authen-
ticity and integrity of the request, determines the authorization and
the symmetric-key policy in force for the requester (or the default
policy), generates a new symmetric key based on this policy, assigns it
a Global Key-ID (GKID), escrows the key (which includes encrypt-
ing it with multiple RSA keys), encrypts the key with the requester’s
transport digital certificate, logs the transaction details (which in-
cludes digitally signing the transaction) and responds to the client
with a WSS-compliant SOAP response.

The SKCL client, upon receiving the response, verifies the authen-
ticity and integrity of the request, caches the secured object if so
configured, decrypts the symmetric key and the embedded key-use
policy, and returns it to the calling application. The calling applica-
tion at this time may choose to have the SKCL perform the actual
encryption, or perform it itself.

A similar process is repeated when a client application needs to de-
crypt a previously encrypted object such as a file, directory of files,
database record, etc. The application determines the GKID of the

A fault message from the SKS
server, if either of the two calls
does not succeed

Security features
Given the sensitivity of the informa-
tion managed within the SKMS, the
architecture is predicated on an ex-
traordinary level of security. (As with
any security architecture, the controls
and procedures in place at any specific
implementation determine the degree
of vulnerability the SKMS will have
against attacks, so please don’t assume
these controls are bulletproof and you
can skimp on other aspects of security.)
The SKMS incorporates the following
security features:

All symmetric keys are generated using any number of com-
pliant cryptographic providers, thus allowing sites to use
whatever level of sophistication is desired for their imple-
mentation

All symmetric encryption keys are themselves encrypted us-
ing multiple RSA asymmetric keys

All database records on the SKS server are digitally signed
before storage, and verified upon retrieval to ensure their in-
tegrity hasn't been compromised

All administrative operations through the console are digi-
tally signed and maintained in a history log for audit pur-
poses, and verified upon retrieval

All administrative operations through the console require
SSL/TLS-based client authentication

Only digitally signed client requests are accepted by the SKS
server from SKCL clients

Only digitally signed responses from the SKS server are ac-
cepted by SKCL clients

All symmetric keys are transported, encrypted for the spe-
cific client making the request

All cached keys on the client are digitally signed and en-
crypted on storage, decrypted and verified upon retrieval to
ensure their integrity

All private keys of the digital certificates can be stored on
FIPS-certified cryptographic tokens ranging from software
to smartcards, TPMs to HSMs, to ensure their security

Operations
Refer to Figure � for the following discussion. When a client – be it
a laptop, a DB application or an e-commerce Web server – needs a
symmetric key to encrypt some information, it makes a request for
a new symmetric key to the linked-in SKCL (or directly to the SKS
server if it has implemented the protocol itself).

The SKCL checks its key-cache to determine if it has any cached
symmetric keys that are valid for use. If so, it retrieves the key, de-
crypts it, verifies its integrity, checks its KeyUsePolicy (every sym-
metric key object has an encryption policy embedded in it, previous-
ly defined by the site Security Officer) and then hands the requesting
application the symmetric key for use. If the application chooses not

•

•

•

•

•

•

•

•

•

•

•

Symmetric Key Management Systems | Arshad Noor

Java
Application

RPG
Application

Application
Server

RDBMS

C/C++
Application

Crypto Module

Crypto Module

Key Cache

RPGNI JNI

Symmetric Key Client Library

Client SKS Server

Network

Figure 1 – Symmetric key request

As with any security architecture, the
controls and procedures in place at any
specific implementation determine the
degree of vulnerability the SKMS will

have against attacks.

ISSA Journal | February 2007

29

symmetric key it needs (which would have been previously stored
with the encrypted ciphertext) and makes a request for this key to
the SKCL. The SKCL checks to see if the requested key is in the
key-cache. If it is, it goes through the standard security checks and
returns the symmetric key to the application; if not, it makes a re-
quest to the SKS server for this symmetric key. Upon receiving the
request and after the standard se-
curity checks, the SKS server re-
sponds with the symmetric key to
the client. If the key does not exist
for any reason, or the client is not
authorized to receive the key, or
for other error conditions, the SKS
server returns a SOAP Fault to the
requesting client.

It is noteworthy to mention that
given this operational infrastruc-
ture, use of a unique symmetric key to encrypt every record in a da-
tabase is feasible. With such an encryption policy, the breach of any
key reduces the exposure of the database down to just a single record.
This is in stark contrast to existing designs, where a single key typi-
cally encrypts an entire database or dataset, thus magnifying the loss
associated with the loss of that single key.

Implementation
The construction of an SKMS will typically begin with the creation
of a PKI – or procurement of PKI services – to manage the issuance
of digital certificates to every client. The architecture deliberately es-
chewed the use of User ID/Password for authentication because of
their inability to prevent attacks against single-factor credentials. The
clients and servers in an SKMS use digital certificates for authenti-
cation, and secure storage and transport of symmetric keys within
the infrastructure. (Notwithstanding the use of digital certificates,
the administration console allows an Operations or Security officer
to “deactivate” any client or server on the SKMS network without
revoking the digital certificate of the affected entity.)

Simultaneously, the application that will use the SKCL is modified
to integrate the API and accommodate the encrypted data (cipher-
text) and the GKID in its database. This raises a valid question of
commercial off-the-shelf (COTS) software: How does one use the
SKMS if a specific COTS at a site does not support it? Currently we
are at a stage of the SKMS’ evolution, just as DNS and RDBMS were
at their inception. Before the creation of these “abstraction” technolo-

gies, applications had to resolve hostname-IP addresses and perform
data management on their own. As DNS and RDBMS protocols
and APIs became standards, application developers abandoned their
proprietary implementations to adopt industry standards – the mon-
etary benefits were too good to ignore. It is anticipated that SKSML
will be adopted faster than DNS and the RDBMS, because of the

same benefits that would accrue
to independent software vendors,
and also due to the regulatory
and TCO pressures on IT orga-
nizations.

Multiple SKS servers are de-
ployed (installation instructions
are available at www.strongkey.
org), and encryption policies con-
figured on the servers, while digi-
tal certificates are issued to clients

that will communicate with the servers. The applications are now
ready to start requesting key-management services from the SKS
servers. The SKMS transitions to Production status at this point,
and traditional operational activities take over (backup, configura-
tion management, DR, etc.).

Conclusion
While symmetric encryption has been in use for decades within gen-
eral computing, we have reached a confluence of inflection points in
technology, the Internet and in regulatory affairs, that require IT
organizations to implement Symmetric Key Management Systems
(SKMS) as independent infrastructures. Using the newly released
open-source software, and the soon-to-come Symmetric Key Ser-
vices Markup Language (SKSML) standard from OASIS, IT or-
ganizations have another – and perhaps, one of the most effective
– defense weapon in their arsenal against an increasingly hostile
Internet.

About the Author
Arshad Noor is the architect and primary developer of the open-source
StrongKey Symmetric Key Management software. He is also the Co-
Chair of the OASIS Technical Committee on Enterprise Key Manage-
ment Infrastructures that hopes to standardize the SKSML protocol. He
can be reached at arshad.noor@strongauth.com.

Symmetric Key Management Systems | Arshad Noor

Existing designs – where a single key
typically encrypts an entire database or
dataset – magnify the loss associated

with the loss of that single key.

ISSA Journal | February 2007

