
jCAM and

Interoperability Tutorial

- Interoperability
Mechanisms

- Exchange Management

- Leveraging Open Standards

- XSD ingesting

- WSDL facilitation David RR Webber

Chair OASIS CAM TC

(Content Assembly Mechanism)

E-mail: drrwebber@acm.org

http://wiki.oasis-open.org/cam

slide 2

Interoperability; why it is essential!

slide 3

Overview

� Goal is tools for better interoperability:

clearer, quicker, easier

� Provide developers with tools to aid delivery,

documenting and testing of solutions beyond

XSD schema alone

� Provide extensible toolkit that can be

customized easily

� Automate delivery of components for the

publishing formal interoperability certification

packages

� Leverage XML and open standards approach

slide 4

Approach

� Open Public Standards
� W3C XML/XSD and

� OASIS Content Assembly Mechanism (CAM) XML instance handling
rules technology

� CAM Designed for Interoperable Exchanges
� Augments W3C XSD – fills in the gaps

� Easier WYSIWYG format than XSD syntax

� Supports use of XSLT for tool development

� jCAM Eclipse editor environment provides

convenient open desktop toolset

� Tool components built with XSLT scripts

� Available as Open Source on SourceForge

slide 5

Creating a Package for Interoperability

� Step 1 - Ingest XSD – extract rules, structure, annotations

� Step 2 - Select & mark out your use model in visual editor

� Generate and save your “want list” selections

� Step 3 - Generate your XSD schema subset (WSDL)

� Step 4 - Generate rich live test data examples
� (complete with content hints / pass / fail / random options)

� Run rules engine - verify operation and outcomes

� Step 5 - Build business analyst documentation of
structure elements and rules

� Package and Share with exchange partners

slide 6

Partner Conformance Testing

Testing,

Agreement /

Alignment.

Validate

Templates

Report

Partner

Uses &

Creates

Results

Test

Pass / Fail

XML
html

3
2

4

Test Cases

XML

Package

Structure

Rules

Context

Examples

Documentation

Publish

1

Verify Result Outcomes

XML

Localization

Content

Hints

slide 7

Interoperability check-list:

� XSD schema structure model

� CAM template + rules (deterministic)

� Documentation of use patterns (aka “want list” + subset XSD)

� Test cases and examples (pass/fail)

� Content hinting (localization)

� Validation engine for unit and regression testing

� Open standard, open platform and open source allows

consistent agreements between participants

slide 8

UML

IEPD Package Contents

Templates

Structure

Rules

Context

Vocabulary

XML Schema

2

1

3

CAM Template

XSD
Domain

Schemas

Models

4

Documentation

(Word / PDF / OpenDoc

Excel / HTML)

Purpose

Descriptions

Tables

Diagrams

Want List in XML

XSD subset
XML

Localization

to Requirements

Examples & Test Cases
Generated

Conformance

Suite

XMLXMLXMLXML

5

Generate,

Manage and

Test 1) thru 4)

above

* IEPD – Information Exchange
Package Documentation

slide 9

Challenge: XSD is non-deterministic!

� The schema contains the superset of every exchange

component variation

� XSD does not have direct context mechanisms

� Hence people make everything in schema optional

� Dependencies are not clear

� It is difficult to understand the constructs and to document the

rules clearly for business users to verify

� It is hard to create test cases and instances (the “want list” tough

to visualize)

� Disconnect between XML data types and legacy data – e.g.

dates, telephone formats, post codes

Interoperability
Mechanisms

Creating an

Information Exchange Package Documentation

(IEPD) Package

slide 11

Tutorial

� Ingesting XSD schema
� step by step example

� Documenting the Exchange Patterns
� Creating “want list” selections

� Subset XSD generation (for WSDL)

� Documentation reporting options

� Testing and Conformance
� Creating Test Case examples

� Content Hinting

� Running Test Cases

� Advanced Techniques

Ingesting XSD
Schema

Using jCAM editor Wizard

(http://www.jcam.org.uk)

slide 13

Ingesting XSD to CAM template format

Exchange xmlExchange xml

*Exchange xsd*Exchange xsd

*Extension xsd*Extension xsd

*Code list

xsd

Namespace

* Optional

XML Schema

xsd subsetxsd subset *Constraint xsd*Constraint xsd

INGESTINGEST

Structure

Rules

Documentation

XSLT tools
process
entire XSD
collection

XSLT tools
process
entire XSD
collection

CAM = Content Assembly Mechanism

XSD Collection

slide 14

Step 1 & 2 – Pick the XSD schema to ingest

1

Choose File / New Option

2

Specify XSD Locations

Pick XSD

First location is the root
folder for the XSD collection.

Typically this is the same as the
location for the XSD schema you
want to ingest.

(Complex XSD can have this in
separate folder; hence need for
option)

slide 15

Step 3 – Choose the XSD parent element

From the dropdown list pick the

correct root element you wish to

use.

XSD’s may have more than one

collection in them (as shown here)

or may not have the parent node

element cleanly defined.

The Wizard shows you the list of all

possible ones it finds – so you can

select and confirm the right one.

3

Choose XSD parent element

Confirm and start the XSD ingesting

slide 16

Step 4 – Ingesting complete – Save Results

4

Completed template is loaded

and save dialogue appears

Processing usually takes a

few seconds.

Complex XSD can take over

an hour to process however.

Tip: jCAM runs the ingesting

as a background task – so

you can continue to use the

computer while such long

ingesting is proceeding.

slide 17

Step 5 – Review ingested structure

5

Completed template is shown

in the structure navigator panel

for review and editing

Template contains all the

default content model

and structure rules

ingested from the XSD.

All annotations and

documentation from XSD

also ingested (show as

“paperclip” symbol).

Code lists and typical

content values inserted

for easy visual reference.

slide 18

Resolving XSD schema import / includes

� Normally the wizard should figure this all out for you

� Complex XSD can have deeply nested “trees” of

imported definitions and type “libraries” of other

XSDs – that may be elsewhere than the current

folder for your particular XSD

� Tip: If the ingesting fails – repeat step 1 – but re-

specify location for where your XSD collection is to

be found

� Tip: Use Console to view log messages

slide 19

Console Log view displays messages

Examining details of log

messages to determine

if any resolution is

needed

slide 20

Optional Advanced Selections
Internal log message level – 1 is

critical messages only, thru 4 which

is “all”. Use this for debugging.

Generation Mode – “Rules” is the

normal mode; check

“Annotations” to ingest notes and

comment text as well. Diagnostics

is for advanced debugging only.

“inline” is normal mode; use

“file” if your annotation results

are too big for available

memory

Annotation Exclude – this allows

selection of only main annotations

– not those from imports. Items

from matching namespaces are

ignored.

“text” is normal mode; use “all” if your

annotations have embedded XML tags
“want list” optimization; will exclude items

marked to be ignored

slide 21

Anonymous namespace handling

� Some schemas have by default an anonymous
namespace declaration in their root <xsd:schema>

element definition

� This causes a default prefix to be added to any non-

qualified name

� If you desire this behavior (most people do not
realize why their simple element names end up

requiring a prefix) then use the option in the / Tools
menu to add the prefix you want

� Typically this is technique is only for schema that
may be included into another schema

Documenting the
Exchange Patterns

“Want lists”, documentation
and XSD subset generation

slide 23

Building a Want List

MARK

WHAT

IS NOT

NEEDED

MARK

WHAT

IS NOT

NEEDED

Structure

Rules

Documentation

Make Want List

DESIRED RESULTS

Structure

likely

extensive!!!

excluded

items

slide 24

Marking Items for exclude - want list

� Can exclude at all levels within the structure
� excludeTree()

� excludeElement()

� excludeAttribute()

� Use XPath operators to control scope:
� Specific node

� Group of nodes

� Anywhere occurs in structure

� Contextually based on condition

� Can add new domain elements with own

namespace and subset schema

slide 25

Using Editor to mark exclude items

Structure Editor Tools

Select focus on item

Invoke action menu

(right mouse click)

Pick action

Tip: exclude rule display

is context sensitive and

only available on

optional items

Tip: use “Add New Rule”

mode to specify

different XPath for

exclude (quick mode

assumes “current path”)

slide 26

Export and Save completed Want List

File Menu Option

Select Export and specify

filename of destination.

Excluded items are

designated with red

“dot” in structure editor

and italics font with no

bold highlight

slide 27

Want List Details

EXCLUDE FLAG
VALUE

(Exported Example)

Want Lists provide a

handy way to

catalogue the

exchange model

and can be re-used

later by importing

into other templates

slide 28

Importing Want list operation

File Menu Option

Select Import and specify

filename of your existing

wantlist xml.

Import process matches

the path expressions in

your want list to the XPath

expressions in the

template.

Exclude statements

generated for matching

items.

Makes it easy to re-apply a want list on new versions of schemas, or on similar

schemas with same blocks of content – address, company, person, etc.

slide 29

Adding New Domain Elements

Select root element node in

structure; right mouse click for

context menu; select “Add

Namespace”;

then enter prefix and URI

1

Select element node in

structure; right mouse click for

context menu; select “Add

Child Attribute / Element”;

then enter prefix and name

2

slide 30

Rule Validation + Interoperability Checks

Tools Menu Option

• This option runs an analysis of your template and

reports potential problems that it finds

• Also shows useful statistics about your template

slide 31

Compress Operation

File Menu Option

Select option and specify

filename for new copy of

your template.

Compress process removes all

rules and structure items marked

with an exclude statement.

Note: ignores excludes that have

a conditional context expression.

Compress is OPTIONAL. You only need to do it for two reasons:

a) to generate documentation of only your structure items

b) to generate a new subset XSD schema

slide 32

Generating sub-set schema

Select Export CAM as XSD

menu option

1

File Menu Option

2

Confirm the location and

filename, and namespace

mode.

Select ‘false’ for namespace

use will minimize the use and

requirement for namespaces

in the subset schema and

corresponding XML instance

documents.

slide 33

Schema sub-set generated
Set of XSD files with filename and

namespace suffix

Each namespace file is import for

those specific type definitions

Reviewing XSD results in

a schema editor tool

slide 34

Constraint Schema Considerations

� The CAM template allows full use of XPath
conditional expressions and a rich set of
over 30 functions including:
� setNumberRange(), setLength(), setValue(), setLimit(),
setDateMask(), makeRepeatable(),restrictValues(),excludeTree()

� Those that are compatible with XSD
constraints will cause constraint schema
assertions to be written out when exporting
to schema

� In the advanced topics section we will look
at cross field validations using XPath
conditional rules

Generating
Testing and

Conformance
Examples

Selecting valid and invalid modes

Run rules validation check

Customizing content with Hints

slide 36

Test Case Generation Quick Start

File Menu Option Default directory to write
examples into

Name to be used for
the examples

How many examples
to create

Repeating elements
count

for Quick Test – just click “OK” to use default settings

slide 37

Test Case Results

Active links to

view the

generated

examples

slide 38

Advanced Generation Options

How to handle
optional items: all |
random | none

If you want deliberate
errors for fail testing;
(will give variety of
data and structure
errors)

Use namespaces
or not; if ‘false’ is
selected – then

XML instances are
created with

minimized
namespace

usage.

Optional content hints
(explained next)

Use slider to pick a specific
seed value – or leave blank
for random seed

Optional schema file
validation link; use this
to have example
validate with schema
or sub-set schema

Use content type
or item name
(name is useful for
checking backend
transform
processing)

slide 39

Test Case Generator Feature Summary

� Make both Pass / Fail testing examples

� Content hinting so examples use real not fake data

� Test optional item logic with: all / random / none

� Uses exclude() assertions so does not include those

items – makes realistic examples of your use pattern

� Can pass in seed value – use when adding and testing

hints (each test case is labelled with its seed value)

� Make hundreds of test cases without manual editing

� Can link test case to XSD schema for structure tests

� You can modify XSLT to meet own testing needs

slide 40

Run CAM Rules Check on Examples

Pick Test Case Example to

VALIDATE; click Finish to run

validation rules

Review validation results

Run Menu Option

1

3

2

slide 41

Content Hinting Mechanisms

� Designed to create realistic data examples

� Hints can be provided in two ways

� Firstly - using ‘Value’ notes in annotations on

specific items in the structure editor

� Second – create your own Hints XML file and

add matching rules to globally apply across

your template(s) – e.g. FirstName, LastName,

Address, BirthDate, etc.

� Can export from one template, import into

another

slide 42

First Approach: annotation Value Hints

Select focus on structure

item

Invoke action menu (right

mouse click)

Choose “Edit Annotations”

slide 43

Then add Value annotation item

Click on “Add New”, then

enter “Value” as Type and

confirm “OK”

Select “Value” tab

Enter values terminated with “|”

character

1

2

3

4

5 Re-run Example export to see results

slide 44

Second: Hints File Mechanism (XML file)

like / with partial name matching

key matching on tag name

key / parent path matching

use when same name occurs within
different parents – e.g. Country and
Person / NameElement with different
content and context

use for exact match of items

3

2

1

use for component match on
items – e.g. first with name
matches <nxnl:first_name>

Note: matching is case sensitive but ignores namespaces

TIP: can use Export Hints to create initial XML file for editing

slide 45

A- Using Examples Generator with Hints

Select XML hints file to be used here

slide 46

B- Import Hints into Annotations (merge)

set and select as

needed

Option to auto-

reload new anno

file into current

template

Documentation

Default reporting options

slide 48

Documentation Layouts

� Five options
� Source XML

� Component details (XML)

� Tabular format (HTML)

� Interactive web page (wiki)

� Code list

� Tabular format page layout for data analyst

use and designed to make rules and use

patterns clear

� Each documentation layout XSLT script can

be customized as desired

slide 49

Open Documentation Mechanism

� Structure Editor runs XSLT on CAM CXF to

output results as HTML document

� External CSS style sheet controls HTML

content formatting, colors, fonts.

� Editor Preferences menu allows overriding of

default documentation style sheets

CAM

Template

XML (CXF)
Documentation

Generator

HTML

Report

Pages

CSS

style sheet

XSLT

script customizable

slide 50

Tabular Documentation
Documentation Menu Option

Select Format, resulting

HTML opens in browser

viewer

slide 51

Tabular HTML Content Details

Enhanced
Data type
Logic

Extended
Code list
handling

Clear use pattern

XPath
references
and
functions

Annotations

Summary

� Ingesting XSD

� Creating use pattern (aka want list)

� Generating test examples

� Hints system

� Generate XSD schema subset

� Running tests

slide 53

IEPD Package Contents Review

Templates

Structure

Rules

Context

Vocabulary

XML Schema

2

1

3

CAM Template

4

Documentation
(Word / PDF / OpenDoc

Excel / HTML)

Want List in XML

XSD subset

Examples &

Test Cases

5

* IEPD – Information Exchange
Package Documentation

����

����

����

����

slide 54

Summary

� Capabilities covered
� Ingesting XSD

� Creating use pattern (aka want list)

� Generating test examples

� Hints system

� Generate XSD schema subset

� Running tests

� Applicable to board range of domains and
schemas

� Enhanced interoperability through consistent
method, testing and shared clear exchange
package definitions

� Enables SOA implementations

Advanced
Techniques

� Extending rules for actual use cases

� Using XPath selector wizard

� Handling ingestion recursion issues

� SourceForge XSLT repository

slide 56

Extending Rules for actual use cases

� Emergency Response Services Workflow using OASIS EDXL exchanges

slide 57

Illustrative EDXL requirements

� When AdultICU Bed type > 0

- AND Triage Quantity > 5

� Require Facility State = CA, NV, NM

� When Admissions Total > 50
- AND Deaths > 0

Outbreak alerting

Facility Matching

Region Restriction

slide 58

Template rules syntax

<as:BusinessUseContext>

<as:Rules>

<as:default>

<as:context>

<as:constraint condition="//Activity24Hr /Admissions > ‘50’

and(// Activity24Hr /Deaths > ‘0’)" action="restrictValues(//
Activity24Hr /Admissions, ‘Alert – possible outbreak’) "/>

<as:constraint action="restrictValues(//ns5:AdministrativeArea
/ns5:NameElement , 'CA|NV|NM')"/>

</as:context>

</as:default>

</as:Rules>

</as:BusinessUseContext>

slide 59

XPath selector wizard

Check boxes allow user

to select scope of rule

action

Conditional context rules

can be optionally used

Documentation notes

can be added here

XPath syntax is

automatically generated

for you

slide 60

Ingestion Recursion Handling

� In XSD schema syntax – recursive links and

type references are not marked as such

� Ingestion process has no way of knowing

when recursion is about to occur

� Solution – add annotation to XSD schema

element definition:
� <xsd:annotation>

<xsd:documentation>

<recursive/>

</xsd:documentation>

</xsd:annotation>

slide 61

SourceForge XSLT svn repository

� Using any svn client the XSLT scripts can be

retrieved from:
� https://camprocessor.svn.sourceforge.net/svnroot/camprocessor/

camed/uk.org.jcam.camed/trunk/xsl/

slide 62

“CAM Kit” of XSLT tools used

� XSD 2 Schema
� expands original target schema resolving imports and includes

� XSD 2 CAM
� extracts structure and rules and builds template from schema

� XML 2 Wantlist
� builds want list from any XML instance (uses Level Depth setting)

� CAM 2 Examples
� Generates a collection of XML instance test cases

� Import/Export Hints
� Manage and apply content hinting across CAM templates

� CAM 2 XSD export
� Creates a subset XSD from CAM template (applies want list)

Resources /
Installation

Selection of useful links and
additional technical details

slide 64

Quick Install for Eclipse jCAM Editor

� Download the latest editor ZIP file from the
download site on SourceForge:
� http://downloads.sourceforge.net/sourceforge/camprocessor

� Create folder c:\jCAM

� Open up the ZIP file and extract the CAMed
folder into c:\jCAM\CAMed

� From the c:\jCAM\CAMed directory click
on the CAMed.exe icon to run the program

� Create shortcut to the CAMed.exe by right
click on icon and select create shortcut

� Drag and drop shortcut to desktop

slide 65

NIEM IEPD Ancillary XSLT

� Ability to create a spreadsheet of NIEM core
component elements using lookup from schema
components

� 4 files
� NIEM-repository.xsl

� NIEM-lookup.xsl

� NIEM-repository.xml

� Property.xml

� The repository is extracted from the main NIEM
properties.xml (exported from NIEM Access
database)

� NIEM-lookup then reads the CXF of template and
writes out cross-reference xml that is then opened in
Excel as a spreadsheet

slide 66

www.jcam.org.uk

wiki.oasis-open.org/cam

www.oasis-open.org/committees/cam

docs.oasis-open.org/cam

www.oasis-open.org/committees/emergency

www.niem.gov

Resources:

slide 67

A special mention for our contributors to the CAM and
jCAM work:

UK - Martin Roberts and team from BTplc
US - Michael Sorens for review and testing

Credits:

