
Universal Business Language (UBL)
2.0 Naming and Design Rules

Public Review Draft 02, 21 August 2009
Document identifier:

prd2-UBL-2.0-NDR-02

Locations:
Persistent version: http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/
Current version: http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/

Technical committee:
OASIS Universal Business Language (UBL) TC

Chairs:
Jon Bosak, Pinax <bosak@pinax.com>
Tim McGrath, Document Engineering
 Services <tim.mcgrath@documentengineeringservices.com>

Editors:
Mike Grimley, US Navy <MJGrimley@acm.org>
Mavis Cournane, Cognitran Limited <mavis.Cournane@cognitran.com>

Abstract:
This specification documents the naming and design rules and guidelines for the construction of
XML components for the UBL vocabulary.

Status:
This document was last revised or approved by the UBL TC on the above date.The level of approval
is also listed above. Check the current location noted above for possible later revisions of this doc-
ument. This document is updated periodically on no particular schedule.

Technical Committee members should send comments on this specification to the Technical Com-
mittee's email list. Others should send comments to the Technical Committee by using the "Send
A Comment" button on the Technical Committee's web page at http://www.oasis-open.org/commit-
tees/ubl.

For information on whether any patents have been disclosed that may be essential to implementing
this specification, and any offers of patent licensing terms, please refer to the Intellectual Property
Rights section of the Technical Committee web page (http://www.oasis-open.org/commit-
tees/ubl/ipr.php).

The non-normative errata page (if any) for this specification is located at http://www.oasis-
open.org/committees/ubl.

1

http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/
http://docs.oasis-open.org/ubl/prd2-UBL-2.0-NDR/
mailto:bosak@pinax.com
mailto:tim.mcgrath@documentengineeringservices.com
mailto:MJGrimley@acm.org
mailto:mavis.Cournane@cognitran.com
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl/ipr.php
http://www.oasis-open.org/committees/ubl/ipr.php
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl

Table of Contents
1. Introduction ... 3

1.1. Audiences ... 3
1.2. Scope ... 3
1.3. Terminology and Notation ... 3
1.4. Guiding Principles .. 4

2. Relationship to ebXML Core Components ... 4
2.1. Mapping Business Information Entities to XSD ... 6

3. General XML Constructs ... 8
3.1. Overall Schema Structure .. 8
3.2. Naming and Modeling Constraints ... 10
3.3. Reusability Scheme ... 11
3.4. Extension Scheme .. 12
3.5. Namespace Scheme .. 12
3.6. Versioning Scheme ... 13
3.7. Modularity Strategy .. 15
3.8. Annotation and Documentation Requirements .. 20

4. Naming Rules .. 23
4.1. General Naming Rules ... 23
4.2. Type Naming Rules ... 24
4.3. Element Naming Rules .. 26
4.4. Attributes in UBL ... 27

5. Declarations and Definitions ... 27
5.1. Type Definitions ... 27
5.2. Element Declarations .. 30
5.3. Code List Import .. 30
5.4. Empty Elements ... 31

6. Code Lists ... 31
7. Miscellaneous XSD Rules .. 31

7.1. xsd:simpleType .. 31
7.2. Namespace Declaration ... 31
7.3. xsd:substitutionGroup ... 31
7.4. xsd:final ... 32
7.5. xsd: notation .. 32
7.6. xsd:all .. 32
7.7. xsd:choice ... 32
7.8. xsd:include .. 32
7.9. xsd:union .. 32
7.10. xsd:appinfo .. 32
7.11. xsd:schemaLocation .. 33
7.12. xsd:nillable .. 33
7.13. xsd:any ... 33
7.14. Extension and Restriction ... 33

8. Instance Documents .. 33
9. Acknowledgements ... 34

Appendixes

A. Code List Metadata (Informative) .. 35
B. UBL-approved Acronyms and Abbreviations (Informative) ... 37
C. Technical Terminology (Informative) .. 38
D. References .. 40
E. Notices ... 41
F. UBL NDR Checklist .. 42

2

Universal Business Language (UBL)
2.0 Naming and Design Rules

1. Introduction
XML is often described as the lingua franca of e-commerce. The implication is that by standardizing on XML,
enterprises will be able to trade with anyone, any time, without the need for the costly custom integration work
that has been necessary in the past. But this vision of XML-based "plug-and-play" commerce is overly simplistic.
Of course XML can be used to create electronic catalogs, purchase orders, invoices, shipping notices, and the
other documents needed to conduct business. But XML by itself doesn't guarantee that these documents can be
understood by any business other than the one that creates them. XML is only the foundation on which additional
standards can be defined to achieve the goal of true interoperability. The Universal Business Language (UBL)
initiative is the next step in achieving this goal.

The task of creating a universal XML business language is a challenging one. Most large enterprises have already
invested significant time and money in an e-business infrastructure and are reluctant to change the way they conduct
electronic business. Furthermore, every company has different requirements for the information exchanged in a
specific business process, such as procurement or supply-chain optimization. A standard business language must
strike a difficult balance, adapting to the specific needs of a given company while remaining general enough to
let different companies in different industries communicate with each other.

The UBL effort addresses this problem by building on the work of the electronic business XML (ebXML) initiative.
UBL is organized as an OASIS Technical Committee to guarantee a rigorous, open process for the standardization
of the XML business language. The development of UBL within OASIS also helps ensure a fit with other essential
ebXML specifications.

This specification documents the rules and guidelines for the naming and design of XML components for the UBL
library. It contains only rules that have been agreed on by the OASIS UBL Technical Committee. Consumers of
the Naming and Design Rules Specification should consult previous UBL position papers that are available at ht-
tp://www.oasis-open.org/committees/ubl/ndrsc/. These provide a useful background to the development of the
current rule set.

1.1. Audiences
This document has several primary and secondary targets that together constitute its intended audience. Our primary
target audience is the members of the UBL Technical Committee. Specifically, the UBL Technical Committee
uses the rules in this document to create normative form schemas for business transactions. Other XML schema
developers may find the rules contained herein sufficiently useful to merit consideration for adoption as, or infusion
into, their own approaches to XML schema development.

1.2. Scope
This specification conveys a normative set of XML schema design rules and naming conventions for the creation
of UBL schemas for business documents being exchanged between two parties using XML constructs defined in
accordance with the ebXML Core Components Technical Specification.

1.3.Terminology and Notation
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOM-
MENDED, MAY, and OPTIONAL in this document are to be interpreted as described in Internet Engineering
Task Force (IETF) Request for Comments (RFC) 2119. Non-capitalized forms of these words are used in the
regular English sense.

Definition A formal definition of a term. Definitions are normative.

Example An example of a definition or a rule. Examples are informative.

Note Explanatory information. Notes are informative.

3

Universal Business Language (UBL)
2.0 Naming and Design Rules

http://www.oasis-open.org/committees/ubl/ndrsc/
http://www.oasis-open.org/committees/ubl/ndrsc/

RRRn Identifier of a rule to which an XML schema must comply in order to be UBL
conformant. The value RRR is a prefix to categorize the type of rule where
the value of RRR is as defined in Table 1, “Rule Prefix Value”, and n (1..n)
is the sequential number of the rule within its category. To ensure continuity
across versions of the specification, rule numbers that are deleted in future
versions will not be re-issued, and any new rules will be assigned the next
higher number — regardless of location in the text. Only rules and definitions
are normative; all other text is explanatory.

Table 1. Rule Prefix Value

ValueRule Prefix

Attribute DeclarationATD

Code ListCDL

ComplexType DefinitionCTD

ComplexType Naming RulesCTN

DocumentationDOC

Element DeclarationELD

Element NamingELN

General NamingGNR

General Type DefinitionGTD

General XML SchemaGXS

Instance DocumentIND

Modeling ConstraintsMDC

Naming ConstraintsNMC

NamespaceNMS

Root Element DeclarationRED

Schema Structure ModularitySSM

VersioningVER

The term "XSD" is used throughout this document to refer to Parts 1 and 2 of the W3C XML Schema Definition
Language (XSD) Recommendation.

1.4. Guiding Principles
The UBL NDR primary objectives are to provide the UBL TC with a set of unambiguous, consistent rules for the
development of extensible, reusable UBL schemas.

2. Relationship to ebXML Core Components
UBL employs the methodology and model described in ISO TS 15000-5:2005 -- ebXML Core Components Tech-
nical Specification, Version 2.01 [CCTS] to build the UBL Component Library. CCTS defines a new paradigm
in the design and implementation of reusable, syntactically neutral information building blocks. Syntax-neutral
Core Components are intended to form the basis of business information standardization efforts and to be realized
in syntactically specific instantiations such as ANSI ASC X12, UN/EDIFACT, and various XML representations
such as UBL.

Context-neutral and context-specific building blocks are the essence of the Core Components specification. The
context-neutral components are called Core Components. A Core Component is defined in CCTS as "a building
block for the creation of a semantically correct and meaningful information exchange package. It contains only

4

Universal Business Language (UBL)
2.0 Naming and Design Rules

the information pieces necessary to describe a specific concept". Figure 1 illustrates the various pieces of the
overall Core Components metamodel.

The context-specific components are called Business Information Entities (BIEs). A BIE is defined in CCTS as
"a piece of business data or a group of pieces of business data with a unique Business Semantic definition". Figure
2 illustrates the various pieces of the overall BIE metamodel and its relationship to the Core Components
metamodel. As shown here, there are different types of Core Components and BIEs, each of which has specific
relationships to the other components and entities. The context-neutral Core Components establish the formal re-
lationship between the various context-specific BIEs.

Figure 1. Core Components and Datatypes Metamodel

5

Universal Business Language (UBL)
2.0 Naming and Design Rules

Figure 2. Business Information Entities Basic Definition Model

2.1. Mapping Business Information Entities to XSD
UBL consists of a library of CCTS BIEs, each of which is mapped to an XSD construct (See Figure 3).

6

Universal Business Language (UBL)
2.0 Naming and Design Rules

Figure 3. UBL Document Metamodel

A BIE can be a CCTS Aggregate Business Information Entity (ABIE), a CCTS Basic Business Information Entity
(BBIE), or a CCTS Association Business Information Entity (ASBIE). In understanding the logic of the UBL
binding of BIEs to XSD expressions, it is important to understand the basic constructs of the BIEs and their rela-
tionships as shown in Figure 2. The ABIEs are treated as objects and are defined as xsd:complexTypes. The BBIEs
are treated as properties of the ABIE and are found in the content model of the ABIE as a referenced xsd:element.
The BBIEs are based on reusable CCTS Basic Business Information Entity Properties (BBIE Properties), which
are defined as xsd:complexTypes.

A BBIE Property represents an intrinsic property of an ABIE. BBIE Properties are linked to a data type. UBL uses
two kinds of data types — unqualified datatypes, which are provided by the UN/CEFACT Unqualified Data Type
(UDT) schema module, and Qualified Data Types, which are defined by UBL.

UBL's use of the UN/CEFACT UDT schema module is primarily confined to its importation. It must not be assumed
that UBL's adoption of the UDT schema module extends to any of the UN/CEFACT rules relating to use of the
UDT.

7

Universal Business Language (UBL)
2.0 Naming and Design Rules

The CCTS Unqualified Data Types correspond to CCTS Representation Terms. The UBL Qualified Data Types
are derived from CCTS Unqualified Data Types with restrictions to the allowed values or ranges of the corresponding
CCTS Content Component or CCTS Supplementary Component (see CCTS for explanations of these terms).

CCTS defines an approved set of primary and secondary representation terms. However, these representation terms
are simply naming conventions to identify the data type of an object, not actual constructs.

A CCTS data type defines the set of values that can be used for a particular Basic Core Component Property or
Basic Business Information Entity Property data type. The CCTS data types can be either unqualified (no restrictions
applied) or qualified through the application of restrictions. These data types form the basis for the various XSD
simple and complex types defined in the UBL schemas. CCTS supports data types that are qualified, i.e., it enables
users to define their own data types for their syntax-neutral constructs. Thus, CCTS data types allow UBL to
identify restrictions for elements when restrictions to the corresponding CCTS Content Component or CCTS
Supplementary Component are required.

There are two kinds of BIE Properties — Basic and Association. A CCTS Association BIE Property (ASBIE
Property) represents an extrinsic property — in other words, an association from one ABIE instance to another
ABIE instance. It is the ASBIE Property that expresses the relationship between ABIEs.

Due to their unique extrinsic association role, ASBIEs are not defined as xsd:complexTypes; rather, they are either
declared as elements that are then bound to the xsd:complexType of the associated ABIE, or they are reclassified
as ABIEs.

BBIEs define the intrinsic structure of an ABIE. These BBIEs are the "leaf" types in the system in that they contain
no other BIEs.

A BBIE must have a CCTS Core Component Type. All CCTS Core Component Types are low-level types such
as Identifiers and Dates. A CCTS Core Component Type describes these low-level types for use by CCTS Core
Components, and (in parallel) a CCTS data type, corresponding to that CCTS Core Component Type, describes
these low-level types for use by BBIEs. Every CCTS Core Component Type has a single CCTS Content Component
and one or more CCTS Supplementary Components. A CCTS Content Component is of some Primitive Type. All
CCTS Core Component Types and their corresponding content and supplementary components are predefined in
CCTS.

UBL has developed an XSD schema module that declares each of the predefined CCTS Core Component Types
as an xsd:complexType or xsd:simpleType and declares each CCTS Supplementary Component as an xsd:attribute
or uses the predefined facets of the built-in XSD datatypes for those that are used as the base expression for an
xsd:simpleType.

3. General XML Constructs
This chapter defines UBL rules related to general XML constructs, including overall schema structure, naming
and modeling constraints, reusability, namespaces, versioning, modularity, and documentation.

3.1. Overall Schema Structure
A key aspect of developing standards is to ensure consistency in their implementation. Therefore, it is essential to
provide a mechanism that will guarantee that each occurrence of a UBL conformant schema will have the same
look and feel.

[GXS1] Except in the case of extension, where the "UBL Extensions" element is used, UBL
schemas SHOULD conform to the following physical layout as applicable: See Figure 4.

8

Universal Business Language (UBL)
2.0 Naming and Design Rules

Figure 4. Physical layout

As shown above, a UBL schema should contain a comment block at the top of the schema that functions as a
"schema header".

3.1.1. Element Declarations within Document Schemas

A document schema is a schema within a specific namespace that conveys the business document functionality
of that namespace. The document schema declares a target namespace and is likely to include (xsd:include) internal
schema modules or import (xsd:import) external schema modules. Each namespace will have one, and only one,
major version of a document schema as well as any related minor versions.

9

Universal Business Language (UBL)
2.0 Naming and Design Rules

In order to facilitate the management and reuse of UBL constructs, all global elements, excluding the root element
of the document schema, must be declared in either the Common Aggregate Components (CAC) or Common
Basic Components (CBC) schema modules and referenced from within the document schema.

3.1.2. Root Element

Only a single global element is declared inside a UBL document schema. The single global element is the root
element of every conforming instance.

[RED2] The root element MUST be the only global element declared in the document schema.

3.2. Naming and Modeling Constraints
UBL has the following naming and modeling constraints.

3.2.1. Naming Constraints

A primary aspect of the UBL library documentation is its spreadsheet models. The entries in these spreadsheet
models fully define the constructs available for use in UBL business documents. The spreadsheet entries contain
fully conformant CCTS Dictionary Entry Names (DENs) as well as truncated UBL XML element names developed
in conformance with the rules in Section 4. The XML element name is the short form of the DEN. The rules for
element naming differ from the rules for DEN naming.

[NMC1] Each Dictionary Entry Name MUST define one and only one fully qualified path (FQP)
for an element or attribute.

The FQP anchors the use of the element or attribute to a particular location in a business message. Any semantic
dependencies that the element or attribute has on other elements and attributes within the UBL library that are not
otherwise enforced or made explicit in its structural definition can be found in its prose definition.

3.2.1.1. Modeling Constraints

Modeling constraints are limited to those necessary to ensure consistency in development of the UBL library.

3.2.1.1.1. Defining Classes

UBL is based on instantiating ebXML CCTS BIEs. UBL models and the XML expressions of those models are
class driven. Specifically, the UBL library defines classes for each CCTS ABIE and the UBL schemas instantiate
those classes. The properties of those classes consist of CCTS BBIEs and ASBIEs.

3.2.1.1.2. Core Component Types

Each BBIE is associated with one of an approved set of CCTS Core Component Types.

[MDC1] UBL libraries and schemas MUST only use CCTS Core Component Types, except in
the case of extension, where the UBLExtensions element is used.

3.2.1.1.3. XML Mixed Content

UBL documents are designed to effect data-centric electronic commerce transactions. Including XML mixed
content in business documents is undesirable because business transactions are based on exchange of discrete
pieces of data. The white space aspects of XML mixed content make processing unnecessarily difficult and add a
layer of complexity not desirable in business exchanges.

[MDC2] XML mixed content MUST NOT be used except where contained in an xsd:document-
ation element.

10

Universal Business Language (UBL)
2.0 Naming and Design Rules

3.2.1.1.4. Sequencing

In the UBL model, the prescribed order for the contents of an ABIE is that ASBIEs follow BBIEs. However, this
is, strictly speaking, a rule of the modeling methodology rather than an NDR. The NDR in this case is that the se-
quential order of entities in the model must be preserved.

[MDC0] The sequence of the business information entities that is expressed in the UBL model
MUST be preserved in the schema.

3.3. Reusability Scheme
To promote effective management of the UBL library, all element declarations are unique. Consequently, UBL
elements are declared globally.

3.3.1. Reusable Elements

UBL elements are global and qualified. Hence in the example below, the Address element is directly reusable as
a modular component.

Example 1.

<xsd:element name="Party" type="PartyType"/>
 <xsd:complexType name="PartyType">
 <xsd:annotation>
 <!-- Documentation goes here -->
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="PartyIdentification" minOccurs="0" maxOccurs="unbounded">
 ...
 </xsd:element>
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="Address" type="AddressType"/>

 <xsd:complexType name="AddressType">
 ...
 <xsd:sequence>
 <xsd:element ref="cbc:CityName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:PostalZone" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>
 </xsd:complexType>

11

Universal Business Language (UBL)
2.0 Naming and Design Rules

Software written to work with UBL's standard library should work with new assemblies of the same components,
since global elements will remain consistent and unchanged. The globally declared <Address> element is fully
reusable without regard to the reusability of types and provides a solid mechanism for ensuring that extensions to
the UBL core library will provide consistency and semantic clarity regardless of their placement within a particular
type.

[ELD2] All element declarations MUST be global.

3.4. Extension Scheme
Some organizations are required by law to send additional information not covered by the UBL document structure,
thus requiring an extension to the UBL message. The xsd:any construct is seen as the most efficient way to implement
this requirement.

In general, UBL restricts the use of xsd:any because this feature permits the introduction of unknown elements
into an XML instance. However, limiting its use to a single, predefined element mitigates this risk. For meaningful
validation of UBL document instances, the value of the xsd:processContents attribute of the element must be set
to "skip", thereby removing the potential for errors in the validation layer. Extension imposes cardinality constraints.

The following rules apply in the order below.

[ELD12] The UBL Extensions element MUST be declared as the first child of the document
element with xsd:minOccurs="0".

[ELD13] The UBLProfileID element MUST be declared immediately following the UBL Exten-
sions element with xsd:minOccurs="0".

[ELD14] The UBLSubsetID element MUST be declared immediately following the UBLProfileID
element with xsd:minOccurs="0".

3.5. Namespace Scheme
The concept of XML namespaces is defined in the W3C XML namespaces technical specification. The use of
XML namespace is specified in the W3C XML Schema (XSD) Recommendation. A namespace is declared in the
root element of a schema using a namespace identifier. Namespace declarations can also identify an associated
prefix "shorthand identifier" that allows for compression of the namespace name. For each UBL namespace, a
normative token is defined as its prefix. These tokens (currently udt, qdt, cac, cbc, ext) are defined in Section 3.7.

3.5.1. Declaring Namespaces

Neither XML 1.0 nor XSD requires the use of namespaces. However, the use of namespaces is essential to managing
the complex UBL library. UBL uses UBL-defined schemas (created by the UBL TC) and UBL-used schemas
(created by external activities), and both require a consistent approach to namespace declarations.

[NMS1] Every UBL-defined or -used schema module, except internal schema modules, MUST
declare a namespace using the xsd:targetNamespace attribute.

Each UBL schema module consists of a logical grouping of lower level artefacts that can be used in a variety of
UBL schemas. These schema modules are grouped into a schema set. Each schema set is assigned a namespace
that identifies that group of schema modules. As constructs are changed, new versions are to be created. The
schema set is the versioned entity; all schema modules within that package are of the same version, and each major
version has a unique namespace.

Schema set A collection of schemas that constitute a specific UBL namespace.

Schema validation ensures that an instance conforms to its declared schema. In keeping with Rule NMS1, each
UBL schema module is part of a versioned namespace.

12

Universal Business Language (UBL)
2.0 Naming and Design Rules

[NMS2] Every UBL-defined or -used major version schema set MUST have its own unique
namespace.

UBL's extension methodology encourages a wide variety in the number of schema modules that are created as
derivations from UBL schema modules. Customized schemas should not be confused with those developed by
UBL.

[NMS3] UBL namespaces MUST only contain UBL developed schema modules.

3.5.2. Namespace Uniform Resource Identifiers

A UBL namespace name must be a URI that conforms to RFC 2396. UBL has adopted the Uniform Resource
Name (URN) scheme as the standard for URIs for UBL namespaces, in conformance with IETF's RFC 3121.

Rule NMS2 requires separate namespaces for each UBL major version schema set. In accordance with OASIS
procedures, the UBL namespace rules differentiate between committee draft and OASIS Standard status. For each
schema holding draft status, a UBL namespace must be declared and named.

[NMS4] The namespace names for UBL schemas holding committee draft status MUST be of
the form

urn:oasis:names:tc:ubl:schema:<subtype>:<document-id>

The format for document-id is found in Section 3.6.

For each UBL schema holding OASIS Committee Specification or Standard status, a UBL namespace must be
declared and named using the same notation, but with the value "specification" replacing the value "tc".

[NMS5] The namespace names for UBL schemas holding OASIS Standard status MUST be of
the form

urn:oasis:names:specification:ubl:schema:<subtype>:<document-id>

3.5.3. Schema Location

UBL schemas use a URN namespace scheme. In contrast, schema locations are defined as a Uniform Resource
Locator (URL). UBL schemas must be available both at design time and run time. Therefore, the UBL schema
locations will differ from the UBL namespace declarations. UBL uses an OASIS URL for hosting retrievable
copies of UBL schemas.

3.5.4. Persistence

UBL namespaces use URNs to provide name persistence. UBL namespaces must never change once they have
been declared. Conversely, changes to a schema may result in a new namespace declaration. Thus, a published
schema version and its namespace association will always be inviolate.

[NMS6] UBL published namespaces MUST never be changed.

3.6. Versioning Scheme
UBL distinguishes between major versions and minor versions. Major versions are not backwards compatible.
Minor versions do not break backwards compatibility. In other words, a document instance that validates against
version 1 of the schema must also validate against version 1.1 of the schema, where version 1.1 is a minor version
change based on version 1. However, the same document instances would not necessarily be valid against version
2 of the schema, where version 2 is a major version change.

Versioning information is indicated both in the namespace URI and in the version attribute of the schema module.
However, this information is represented somewhat differently in these two locations.

13

Universal Business Language (UBL)
2.0 Naming and Design Rules

3.6.1. Versioning Information in the Namespace URI

UBL namespaces conform to the OASIS namespace rules defined in RFC 3121. All UBL namespace URIs have
the form:

urn:oasis:names:specification:ubl:schema:xsd:<modulename>-<major>

where <modulename> is the name of the schema module and <major> is a positive integer representing the major
version. The field containing <modulename>-<major> is called the document-id.

[VER2] Every UBL schema module major version MUST have an RFC 3121 document-id of
the form <modulename>-<major>

[VER6] Every UBL schema module major version number MUST be a sequentially assigned
integer greater than zero.

The value of <major> is "1" for the first release of a namespace. For example, the namespace URI for the first
major release of the Invoice domain has the form:

urn:oasis:names:specification:ubl:schema:xsd:Invoice-1

Subsequent major releases increment the value by 1. For example, the second major release of the Invoice domain
has the URI

urn:oasis:names:specification:ubl:schema:xsd:Invoice-2

The rule for minor version releases is as follows:

[VER4] Every minor version release of a UBL schema module MUST have a document-id of
the form <modulename>-<major>

For example, the fifth minor version of the release based on the second major release mentioned above will have
the URI

urn:oasis:names:specification:ubl:schema:xsd:Invoice-2

As can be seen, both the rule and the example for the minor version releases is exactly the same as that for the
major version. There is even a rule stating this directly.

[VER5] For UBL minor version changes, the namespace name MUST not change.

However, minor versioning is handled differently in the xsd:schema element.

3.6.2. Versioning representation in the xsd:schema element

UBL uses the version attribute in the xsd:schema element to convey minor version releases of the schema module.

[VER12] Every major version release of a UBL schema module MUST capture its version
number in the xsd:version attribute of the xsd:schema element in the form <major>.0

[VER14] Every minor version release of a UBL schema module MUST capture its version in-
formation in the xsd:version attribute in the form <major>.<non-zero>

[VER7] Every UBL schema module minor version number MUST be a sequentially assigned,
non-negative integer.

3.6.3. Instance Versioning

UBL version information can also be captured in instances of UBL document schemas via the ubl:UBLVersionID
element.

14

Universal Business Language (UBL)
2.0 Naming and Design Rules

[VER15] Every UBL document schema MUST declare an optional element named UBLVersionID
immediately following the optional UBL Extensions element.

3.7. Modularity Strategy
There are many possible mappings of XML schema constructs to namespaces and to files. In addition to the logical
taming of complexity that namespaces provide, dividing the physical realization of schemas into multiple schema
modules provides a mechanism whereby reusable components can be imported as needed without the need to import
complete schemas.

[SSM1] UBL schema expressions MAY be split into multiple schema modules.

Schema module A schema document containing type definitions and element declarations in-
tended to be reused in multiple schemas.

3.7.1. UBL Modularity Model

UBL relies extensively on modularity in schema design. There is no single UBL root schema. Rather, there are a
number of UBL document schemas used to perform different business functions. UBL is structured so that users
can reuse individual document schemas without having to import the entire UBL document schema library. A
document schema can import individual modules without having to import all UBL schema modules. Each document
schema defines its own dependencies. The UBL schema modularity approach reflects logical associations that
exist between document and internal schema modules,and it ensures that individual modules can be reused to the
maximum extent possible. If the contents of a namespace are small enough then they can be completely specified
within a single document. Document and internal schema modules are shown in Figure 5.

Figure 5. UBL Schema Modularity Model

Figure 5 shows the one-to-one correspondence between document schemas and namespaces. It also shows the
one-to-one correspondence between files and schema modules. As shown here, there are two types of schemas in
the UBL library — document schemas and schema modules. Both types of schemas are conformant with XSD.

15

Universal Business Language (UBL)
2.0 Naming and Design Rules

Each document schema occupies its own namespace and may include zero or more internal modules. The namespace
for a document schema includes any of its internal modules. Schema modules that are not internal to a document
occupy a different namespace, as in the qdt, cbc, and cac schema modules.

Figure 6. Schema Modules

Another way to visualize the structure is by example. Figure 6 depicts instances of the various schema modules
from the previous diagram.

Figure 7 shows how the Order and Invoice document schemas import the CommonAggregateComponents and
CommonBasicComponents external schema modules. It also shows how the Order document schema may include
internal schema modules — modules local to that namespace. The clear boxes show how the various schema
modules are grouped into namespaces.

Any UBL schema module, be it a document schema or an internal module, may import other document schemas
from other namespaces.

16

Universal Business Language (UBL)
2.0 Naming and Design Rules

Figure 7. Order and Invoice Schema Import of Common Component Schema Modules

If two namespaces are mutually dependent, then importing one will cause the other to be imported as well. For
this reason there must not exist circular dependencies between UBL schema modules. By extension, there must
notexist circular dependencies between namespaces. A namespace A dependent upon type definitions or element
declarations defined in another namespace B must import B's document schema.

17

Universal Business Language (UBL)
2.0 Naming and Design Rules

[SSM2] A schema in one UBL namespace that is dependent upon type definitions or element
declarations in another schema namespace MUST only import that schema.

An additional rule is necessary to address potentially circular dependencies as well — schema A must not import
internal schema modules of schema B.

[SSM3] A schema in one UBL namespace that is dependent upon type definitions or element
declarations defined in another schema namespace MUST NOT import the internal schema
modules of that schema.

3.7.2. Internal and External Schema Modules

As illustrated in figures 5 and 6, UBL schema modules are either internal or external.

3.7.3. Internal Schema Modules

UBL internal schema modules do not declare a target namespace, but instead reside in the namespace of their
parent schema. All internal schema modules are accessed using xsd:include.

[SSM6] All UBL internal schema modules MUST be in the same namespace as their corresponding
document schema.

UBL internal schema modules must have semantically meaningful names. Internal schema module names identify
the parent schema module, the internal schema module function, and the schema module itself.

[SSM7] Each UBL internal schema module MUST be named <ParentSchemaModuleName><In-
ternalSchemaModuleFunction>

Example: ExtensionContentDatatype

3.7.4. External Schema Modules

External schema modules are used to group complex types and global elements that are used in multiple document
schemas.

[SSM8] UBL schema modules MAY be created for reusable components.

UBL external schema modules organize the reusable components into logical groupings. At a minimum, UBL
defines the following external schema modules:

1. UBL CommonAggregateComponents
2. UBL CommonBasicComponents
3. UBL Qualified Datatypes

In addition, UBL 2.0 uses the following schema modules provided by UN/CEFACT.

1. CCTS Core Component Types
2. CCTS Unqualified Datatypes
3. Multiple UN/CEFACT Code Lists

Furthermore, where extensions are used, an extension schema module must be provided. This schema module
must be named:

CommonExtensionComponents

[SSM21] The UBL extension schema module MUST be identified as CommonExtensionCom-
ponents in the document name within the schema header.

To ensure consistency in expressing the CommonExtensionComponents schema module, a namespace prefix that
will be used in all UBL schemas must be defined.

18

Universal Business Language (UBL)
2.0 Naming and Design Rules

[NMS18] The CommonExtensionComponents schema module namespace MUST be represented
by the namespace prefix "ext" when referenced in other schemas.

3.7.4.1. UBL Common Aggregate Components Schema Module

The UBL library contains a wide variety of CCTS ABIEs, each defined as an xsd:complexType. Although some
of these complex types may be used in only one UBL schema, many will be reused in multiple UBL schema
modules. For ease of reuse, all the ABIE xsd:complexType definitions used in more than one UBL schema module
are grouped into a single schema module of their own.

[SSM9] A schema module defining all UBL Common Aggregate Components MUST be created.

[SSM10] The UBL Common Aggregate Components schema module MUST be identified as
CommonAggregateComponents in the document name within the schema header.

[NMS7] The UBL Common Aggregate Components schema module MUST reside in its own
namespace.

[NMS8] The UBL Common Aggregate Components schema module namespace MUST be rep-
resented by the namespace prefix "cac" when referenced in other schemas.

3.7.4.2. UBL CommonBasicComponents Schema Module

The UBL library contains a wide variety of CCTS BBIEs based on CCTS BBIE Properties. BBIE Properties are
reusable in multiple BBIEs, and each is defined as an xsd:complexType. Although some of these complex types
may be used in only one UBL schema, many will be reused in multiple UBL schema modules. For ease of reuse,
all the BBIE Property xsd:complexType definitions used in more than one UBL schema module are grouped into
a single schema module of their own.

[SSM11] A schema module defining all UBL Common Basic Components MUST be created.

[SSM12] The UBL Common Basic Components schema module MUST be identified as Com-
monBasicComponents in the document name within the schema header.

[NMS9] The UBL Common Basic Components schema module MUST reside in its own
namespace.

[NMS10] The UBL Common Basic Components schema module namespace MUST be repres-
ented by the namespace prefix "cbc" when referenced in other schemas.

3.7.4.3. CCTS CoreComponentType Schema Module

CCTS defines an authorized set of Core Component Types that convey content and supplementary information
related to exchanged data. As the basis for all higher level CCTS models, these Core Component Types are reusable
in every UBL schema. The complex type definitions for all CCTS Core Component Types are collected in the
Core Component Type schema module published by UN/CEFACT.

3.7.4.4. CCTS Qualified and Unqualified Datatypes

CCTS defines a set of primary and secondary Representation Terms that describe the form of every CCTS BIE.
These Representation Terms are instantiated in the form of data types that are reusable in every UBL schema.
Each CCTS Datatype defines the set of values that can be used for its associated CCTS BBIE Property. These
datatypes may be unqualified or qualified, that is to say, unrestricted or restricted. We refer to these two categories
as CCTS Unqualified Datatypes and UBL Qualified Datatypes.

3.7.4.4.1. CCTS Unqualified Datatypes Schema Module

UBL 2.0 uses the UN/CEFACT Unqualified Data Type schema module, including the code list schema modules
that it imports. When the CCTS Unqualified Datatypes schema module is referenced, the "udt" namespace prefix
must be used.

19

Universal Business Language (UBL)
2.0 Naming and Design Rules

[NMS17] The CCTS Unqualified Datatypes schema module namespace MUST be represented
by the prefix "udt" when referenced in other schemas.

Note: It is the intention of the UBL TC to move the UN/CEFACT code lists out of the UDT module and into the
set of other UBL code lists in versions of UBL following 2.0. See Section 6.

3.7.4.4.2. UBL Qualified Datatypes Schema Module

UBL Qualified Datatypes are defined by specifying restrictions on CCTS Unqualified Datatypes. All the UBL
Qualified Datatype definitions are collected in a single schema module named QualifiedDatatypes that imports
the CCTS UnqualifiedDatatypes module.

[SSM18] A schema module defining all UBL Qualified Datatypes MUST be created.

[SSM19] The UBL Qualified Datatypes schema module MUST be identified as QualifiedDatatypes
in the document name in the schema header.

[SSM20] The UBL Qualified Datatypes schema module MUST import the CCTS Unqualified
Datatypes schema module.

[NMS15] The UBL Qualified Datatypes schema module MUST reside in its own namespace.

To ensure consistency in expressing the UBL Qualified Datatypes schema module, a namespace prefix that will
be used in all UBL schemas must be defined.

[NMS16] The UBL Qualified Datatypes schema module namespace MUST be represented by
the namespace prefix "qdt" when referenced in other schemas.

3.8. Annotation and Documentation Requirements
Annotation is an essential tool in understanding and reusing a schema. UBL, as an implementation of CCTS, requires
an extensive amount of annotation to provide all necessary metadata required by the CCTS specification.

3.8.1. Schema Annotation

The annotation needed to satisfy CCTS requirements considerably increases the size of the UBL schemas, with
undesirable performance impacts. To address this issue, a cut-down alternative has been developed for each UBL
schema. A normative, fully annotated schema is provided to facilitate greater understanding of the schema module
and its components and to meet the CCTS metadata requirements. A non-normative schema devoid of annotation
is provided that can be used at run-time if required to meet processor resource constraints.

[GXS2] UBL MUST provide two schemas for each transaction. One normative schema shall be
fully annotated. One non-normative schema shall be a run-time schema devoid of documentation.

3.8.2. Embedded Documentation

UBL spreadsheets contain all necessary information to produce fully annotated schemas, including information
about each UBL BBIE. UBL annotations consist of information currently required by Section 7 of the CCTS and
supplemented by metadata from the UBL spreadsheet models.

The absence of an optional annotation from the structured set of annotations in a documentation element implies
the use of the default value. For example, there are several annotations relating to context, such as CCTS Business
Context and CCTS Industry Context; their absence implies that their value is "all contexts".

The following rules describe the documentation requirements for each UBL Qualified Datatype and UBL Unqual-
ified Datatype definition. None of these documentation rules apply in the case of extension where the UBL Exten-
sions element is used.

20

Universal Business Language (UBL)
2.0 Naming and Design Rules

[DOC1] The xsd:documentation element for every data type MUST contain a set of annotations
in the following order (as defined in CCTS Section 7):

• DictionaryEntryName (mandatory)
• Version (mandatory)
• Definition (mandatory)
• RepresentationTerm (mandatory)
• QualifierTerm(s) (mandatory, where used)
• UniqueIdentifier (mandatory)
• Usage Rule(s) (optional)
• Content Component Restriction (optional)

[DOC2] A datatype definition MAY contain one or more Content Component Restrictions to
provide additional information on the relationship between the datatype and its corresponding
Core Component Type. If used, the Content Component Restrictions MUST contain a set of
annotations in the following order:

• RestrictionType (mandatory): Defines the type of format restriction that applies to the Content
Component.

• RestrictionValue (mandatory): The actual value of the format restriction that applies to the
Content Component.

• ExpressionType (optional): Defines the type of the regular expression of the restriction value.

[DOC3] A datatype definition MAY contain one or more Supplementary Component Restrictions
to provide additional information on the relationship between the datatype and its corresponding
Core Component Type. If used, the Supplementary Component Restrictions MUST contain a
set of annotations in the following order:

• SupplementaryComponentName (mandatory): Identifies the Supplementary Component to
which the restriction applies.

• RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for the Supple-
mentary Component.

The following rule describes the documentation requirements for each Basic Business Information Entity definition.

[DOC4] The xsd:documentation element for every BBIE MUST contain a set of annotations in
the following order:

• ComponentType (mandatory): The type of component to which the object belongs. For BBIEs
this MUST be "BBIE".

• DictionaryEntryName (mandatory): The official name of a BBIE.
• Version (optional): An indication of the evolution over time of the BBIE Entity.
• Definition (mandatory): The meaning of a BBIE.
• Cardinality (mandatory): Indicates whether the BBIE represents a not-applicable, optional,

mandatory, or repetitive characteristic of the Aggregate Business Information Entity to which
it belongs.

• ObjectClassQualifier (optional): The qualifier for the Object Class.
• ObjectClass (mandatory): The Object Class containing the BBIE.
• PropertyTermQualifier (optional): A word or words which help define and differentiate a

BBIE.
• PropertyTerm (mandatory): Conveys the characteristic or Property of the Object Class.
• RepresentationTerm (mandatory): Describes the form in which the BBIE is represented.
• DataTypeQualifier (optional): A meaningful name that differentiates the data type of the BBIE

from its underlying Core Component Type.
• DataType (mandatory): Defines the data type used for the BBIE.
• AlternativeBusinessTerms (optional): Any synonymous terms under which the BBIE is

commonly known and used in the business.
• Examples (optional): Examples of possible values for the BBIE.

21

Universal Business Language (UBL)
2.0 Naming and Design Rules

The following rule describes the documentation requirements for each CCTS Aggregate Business Information
Entity definition.

[DOC5] The xsd:documentation element for every ABIE MUST contain a set of annotations in
the following order:

• ComponentType (mandatory): The type of component to which the object belongs. For ABIEs
this MUST be "ABIE".

• DictionaryEntryName (mandatory): The official name of the ABIE .
• Version (optional): An indication of the evolution over time of the ABIE.
• Definition (mandatory): The meaning of the ABIE.
• ObjectClassQualifier (optional): The qualifier for the Object Class.
• ObjectClass (mandatory): The Object Class represented by the ABIE.
• AlternativeBusinessTerms (optional): Any synonymous terms under which the ABIE is

commonly known and used in the business.

The following rule describes the documentation requirements for each CCTS Association Business Information
Entity definition.

[DOC6] The xsd:documentation element for every ASBIE element declaration MUST contain
a set of annotations in the following order:

• ComponentType (mandatory): The type of component to which the object belongs. For ASBIEs
this MUST be "ASBIE".

• DictionaryEntryName (mandatory): The official name of the ASBIE.
• Version (optional): An indication of the evolution over time of the ASBIE.
• Definition (mandatory): The meaning of the ASBIE.
• Cardinality (mandatory): Indicates whether the ASBIE represents an optional, mandatory, or

repetitive assocation.
• ObjectClass (mandatory): The Object Class containing the ASBIE.
• PropertyTermQualifier (optional): A word or words which help define and identify the ASBIE.
• PropertyTerm (mandatory): Represents the ASBIE contained by the Association Business

Information Entity.
• AssociatedObjectClassQualifier (optional): The Associated Object Class Qualifiers describe

the "context" of the relationship with another ABIE. That is, it is the role the contained ABIE
plays within its association with the containing ABIE.

• AssociatedObjectClass (mandatory): The Object Class at the other end of the association. It
represents the ABIE contained by the ASBIE.

[DOC8] The xsd:documentation element for every Supplementary Component attribute declar-
ation MUST contain a set of annotations in the following order:

• Name (mandatory): Name in the Registry of a Supplementary Component of a Core Component
Type.

• Definition (mandatory): An explanation of the meaning of a Supplementary Component and
its relevance for the related Core Component Type.

• Primitive type (mandatory): The PrimitiveType to be used for the representation of the value
of a Supplementary Component.

• Possible Value(s) (optional): Possible values of Supplementary Components.

[DOC9] The xsd:documentation element for every Supplementary Component attribute declar-
ation containing restrictions MUST include the following additional information appended to
the information required by DOC8:

• Restriction Value(s) (mandatory): The actual value(s) that is (are) valid for the Supplementary
Component.

22

Universal Business Language (UBL)
2.0 Naming and Design Rules

4. Naming Rules
The rules in this section make use of the following special concepts related to XML elements.

1. Top-level element: An element that encloses a whole UBL business message. Note that UBL business messages
might be carried by messaging transport protocols that themselves have higher-level XML structure. Thus, a
UBL top-level element is not necessarily the root element of the XML document that carries it.

2. Lower-level element: An element that appears inside a UBL business message. Lower-level elements consist
of intermediate elements and leaf level elements.

3. Intermediate element: An element not at the top level that is of a complex type, containing only other elements
and possibly attributes, but no mixed content.

4. Leaf element: An element containing only character data (though it may also have attributes). Note that, because
of the XSD mechanisms involved, a leaf element that has attributes must be declared as having a complex type,
but a leaf element with no attributes may be declared with either a simple type or a complex type.

4.1. General Naming Rules
In keeping with CCTS, UBL uses English as its normative language.

[GNR1] UBL XML element and type names MUST be in the English language, using the primary
English spellings provided in the Oxford English Dictionary.

CCTS adheres to ISO/IEC 11179. The UBL component library is also fully conformant to those rules. The UBL
XSD instantiation of the UBL component library in some cases refines the CCTS naming rules to leverage the
capabilities of XML and XSD. Specifically, truncation rules are applied to allow for reuse of element names across
parent element environments and to maintain brevity and clarity. Following 11179, CCTS mandates three-part
Dictionary Entry Names (DENs) for information items. As an implementation of CCTS, UBL assigns an official
DEN to each item and then converts this to the name in UBL schemas using determinate transformation rules.

[GNR2] UBL XML element and type names MUST be consistently derived from CCTS conform-
ant Dictionary Entry Names.

DENs contain spaces and characters not allowed by XML and therefore not appropriate for UBL XML component
names.

[GNR3] UBL XML element and type names constructed from CCTS Dictionary Entry Names
MUST NOT include periods, spaces, other separators, or characters not allowed by XSD.

Acronyms and abbreviations impair interoperability and therefore are to be avoided to the maximum extent prac-
ticable. Since some abbreviations will inevitably be necessary, UBL maintains a normative list of authorized ac-
ronyms and abbreviations. Creation and maintainance of this list belongs to content definition rather than Naming
and Design, but for convenience, the list used for UBL 2.0 is provided in Appendix B.

[GNR4] UBL XML element names and simple and complex type names MUST NOT use ac-
ronyms, abbreviations, or other word truncations, except those in the list of exceptions maintained
and published by the UBL TC.

The exception list is maintained and tightly controlled by UBL. Additions are made only when necessary. Once
approved, an acronym or abbreviation must always be used to replace the term it stands for.

[GNR6] The acronyms and abbreviations listed in the UBL-approved list MUST always be used
in place of the word or phrase they represent.

Generally speaking, the names for UBL XML constructs must always be singular. The only exception is where
the concept itself is plural.

23

Universal Business Language (UBL)
2.0 Naming and Design Rules

[GNR7] UBL XML element and type names MUST be in singular form unless the concept itself
is plural.

Approved acronyms and abbreviations must be used consistently across documents.

[GNR10] Acronyms and abbreviations at the beginning of an attribute name MUST appear in
all lower case. Acronyms and abbreviations elsewhere in an attribute name MUST appear in
upper case.

[GNR11] Acronyms and abbreviations MUST appear in all upper case for all element and type
names.

XML is case sensitive. Consistency in the use of case for a specific XML component (element, type, attribute) is
essential to ensure that every occurrence of a component is treated as the same. Capitalization helps readability
and consistency. The ebXML architecture document specifies a standard use of upper and lower camel case for
expressing XML elements and attributes, respectively. Following this practice, UBL element and type names use
UpperCamelCase (UCC), and attribute names use lowerCamelCase (LCC).

[GNR8] The UpperCamelCase (UCC) convention MUST be used for naming elements and types.

Example 2.

CurrencyBaseRate
CityNameType

[GNR9] The lowerCamelCase (LCC) convention MUST be used for naming attributes.

Example 3.

currencyID
unitCode

4.2.Type Naming Rules
UBL specifies naming rules for complex types based on CCTS ABIEs, BBIEs, and BBIE Properties. The use of
unique CCTS Dictionary Entry Names for these constructs disambiguates their meanings and prevents duplication.

4.2.1. Complex Type Names for CCTS Aggregate Business Inform-
ation Entities (ABIEs)

UBL xsd:complexType names for ABIEs are derived from their DENs by removing separators to follow general
naming rules and appending the suffix "Type" to replace the word "Details".

[CTN1] A UBL xsd:complexType name based on a CCTS ABIE MUST be the CCTS Dictionary
Entry Name with the separators removed and with the "Details" suffix replaced with "Type".

Example 4.

UBL xsd:complexTypeCCTS Aggregate Business Information Entity

AddressTypeAddress. Details

FinancialAccountTypeFinancial Account. Details

24

Universal Business Language (UBL)
2.0 Naming and Design Rules

4.2.2. Complex Type Names for CCTS Basic Business Information
Entity (BBIE) Properties

All BBIE Properties are reusable across multiple BBIEs. The CCTS does not specify, but implies, that BBIE
Property names are the reusable property term and representation term of the family of BBIEs that are based on
them. The UBL xsd:complexType names for BBIE Properties are derived from the shared Property and Represent-
ation terms portion of the DENs in which they appear by removing separators to follow general naming rules and
appending the suffix "Type".

[CTN2] A UBL xsd:complexType name based on a CCTS BBIE Property MUST be the CCTS
Dictionary Entry Name shared Property Term and its qualifiers and the Representation Term of
the BBIE with the separators removed and with the "Type" suffix appended after the Represent-
ation Term.

Example 5.

UBL xsd:complexTypeCCTS Business Information Entity Property

DeclaredCustomsValueAmountTypeDeclared Customs_ Value. Amount

GrossWeightMeasureTypeGross_ Weight. Measure

[CTN6] A UBL xsd:complexType name based on a CCTS BBIE Property and with a CCTS
BBIE Representation Term of "Text" MUST have the word "Text" removed from the end of its
name.

Example 6.

UBL xsd:complexTypeCCTS Basic Business Information Entity

AgencyNameTypeAgency Name. Text

FloorTypeFloor. Text

[CTN7] A UBL xsd:complexType name based on a CCTS BBIE Property and with a CCTS
BBIE Representation Term of "Identifier" MUST replace "Identifier" with "ID" at the end of its
name.

Example 7.

UBL xsd:complexTypeCCTS Basic Business Information Entity

AgencyIDTypeAgency Identifier. Identifier

VesselIDTypeVessel Identifier. Identifier

[CTN8] A UBL xsd:complexType name based on a CCTS BBIE Property MUST remove all
duplication of words that occurs as a result of duplicate Property Terms and Representation
Terms.

Example 8.

UBL xsd:complexTypeCCTS Basic Business Information Entity

IssueDateTypeIssue Date. Date

IssueTimeTypeIssue Time. Time

25

Universal Business Language (UBL)
2.0 Naming and Design Rules

4.3. Element Naming Rules
As shown in Figure 3, UBL elements are created for each UBL ABIE, BBIE, and ASBIE.

4.3.1. Element Names for CCTS ABIEs (ABIEs)

[ELN1] A UBL global element name based on a CCTS ABIE MUST be the same as the name
of the corresponding xsd:complexType to which it is bound, with the word "Type" removed.

For example, a UBL xsd:complexType name based on the ABIE Party. Details will be PartyType. The global
element based on PartyType will be named Party.

Example 9.

<xsd:element name="Party" type="PartyType"/>
 <xsd:complexType name="PartyType">
 <xsd:annotation>
 <!-- Documentation goes here -->
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="cbc:MarkCareIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:MarkAttentionIndicator" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="PartyIdentification" minOccurs="0" maxOccurs="unbounded">
 ...
 </xsd:element>
 <xsd:element ref="PartyName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="Address" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>

4.3.2. Element Names for CCTS BBIE Properties

The same naming concept used for ABIEs applies to BBIE Properties.

[ELN2] A UBL global element name based on a CCTS BBIE Property MUST be the same as
the name of the corresponding xsd:complexType to which it is bound, with the word "Type"
removed.

Example 10.

<!--===== Basic Business Information Entity Type Definitions =====-->
<xsd:complexType name="ChargeIndicatorType">
 ...
</xsd:complexType>
 ...
<!--===== Basic Business Information Entity Property Element Declarations =====-->
<xsd:element name="ChargeIndicator" type="ChargeIndicatorType"/>

4.3.3. Element Names for CCTS ASBIEs

An ASBIE is not a class like an ABIE or a BBIE Property that is reused as a BBIE. Rather, it is an association
between two classes. Therefore, an element representing an ASBIE does not have its own unique xsd:complexType.

26

Universal Business Language (UBL)
2.0 Naming and Design Rules

Instead, when an element representing an ASBIE is declared, the element is bound to the xsd:complexType of its
associated ABIE by referencing the ABIE's global element declaration.

[ELN3] A UBL global element name based on a CCTS ASBIE MUST be the CCTS ASBIE
Dictionary Entry Name Property Term and its qualifiers and the Object Class Term and qualifiers
of its associated CCTS ABIE. All CCTS Dictionary Entry Name separators MUST be removed.

Example 11.

Global Element NameAssociated ABIE Object ClassCCTS ASBIE Property Term

BuyerContactContact.DetailsBuyer_Contact

OriginAddressAddress.DetailsOrigin_Address

4.4. Attributes in UBL
As a transaction-based XML exchange format, UBL significantly restricts the use of XML attributes. Attribute
usage is relegated to supplementary components only; all "primary" business data appears exclusively in element
content. Attributes are defined in the UN/CEFACT Unqualified Datatype schema module.

5. Declarations and Definitions
In XSD, elements are defined in terms of complex or simple types, and attributes are defined in terms of simple
types. The rules in this section govern the consistent structuring of these types and their documentation in the UBL
Library.

5.1.Type Definitions

5.1.1. General Type Definitions

Since UBL elements and types are intended to be reusable, all types must be named. This permits other types to
establish elements that reference these types, and also supports the use of extensions for the purposes of versioning
and customization.

[GTD1] All types MUST be named.

Example 12.

<xsd:complexType name="QuantityType">
 ...
</xsd:complexType>

UBL disallows the use of the type xsd:anyType, because this feature permits the introduction of potentially unknown
types into an XML instance.

[GTD2] The predefined XML schema type xsd:anyType MUST NOT be used.

5.1.2. Simple Types

CCTS provides a set of constructs called Core Component Types (CCTs) for the modeling of basic data. These
are represented in UBL with a library of complex types. Most "simple" data is represented as property sets defined
according to the CCTs, made up of content components and supplementary components. In most cases, the supple-
mentary components are expressed as XML attributes, the content component becomes element content, and the
CCT is represented with an xsd:complexType. There are exceptions to this rule in those cases where all of a CCT's
properties can be expressed without the use of attributes. In these cases, an xsd:simpleType is used.

27

Universal Business Language (UBL)
2.0 Naming and Design Rules

UBL does not define its own simple types. These are defined in the UN/CEFACT Unqualified Datatype schema
module. UBL defines restrictions of these simple types in the UBL Qualified Datatype schema module.

5.1.3. Complex Types

Since even simple datatypes are modeled as property sets in most cases, the XML expression of these models
primarily employs xsd:complexType. To facilitate reuse, versioning, and customization, all complex types are
named. In the UBL model, ABIEs are considered classes (objects) .

[CTD1] For every class identified in the UBL model, a named xsd:complexType MUST be
defined.

Example 13.

<xsd:complexType name="BuildingNameType">
</xsd:complexType>

Every class identified in the UBL model consists of properties. These properties are either ASBIEs, when the
property represents another class, or BBIEs.

[CTD25] For every CCTS BBIE Property identified in the UBL model, a named xsd:complexType
MUST be defined.

5.1.3.1. Aggregate Business Information Entities (ABIEs)

An ABIE encapsulates the relationship between a class (the ABIE) and its properties (those data items contained
within the ABIE). UBL represents this relationship by defining an xsd:complexType for each ABIE with its
properties represented as a sequence of references to global elements.

[CTD2] Every CCTS ABIE xsd:complexType definition content model MUST contain an
xsd:sequence element containing the appropriate global element declarations.

Example 14.

<xsd:complexType name="AddressType">
 ...
 <xsd:sequence>
 <xsd:element ref="cbc:CityName" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 <xsd:element ref="cbc:PostalZone" minOccurs="0" maxOccurs="1">
 ...
 </xsd:element>
 ...
 </xsd:sequence>
</xsd:complexType>

5.1.3.2. Basic Business Information Entities (BBIEs)

In accordance with CCTS, all BBIEs have a primary or secondary Representation Term. Representation Terms
are expressed in the UBL Model as Unqualified Datatypes bound to a Core Component Type that describes their
structure. In addition to the Unqualified Datatypes defined in CCTS, UBL has defined a set of Qualified Datatypes
that are derived from the CCTS Unqualified Datatypes. The following set of rules specifies the way these relation-
ships are expressed in the UBL XML library. As discussed above, BBIE Properties are represented with complex
types. Within these are xsd:simpleContent elements that extend the Datatypes.

[CTD3] Every CCTS BBIE Property xsd:complexType definition content model MUST contain
an xsd:simpleContent element.

28

Universal Business Language (UBL)
2.0 Naming and Design Rules

[CTD4] Every CCTS BBIE Property xsd:complexType content model xsd:simpleContent element
MUST consist of an xsd:extension element.

[CTD5] Every CCTS BBIE Property xsd:complexType xsd:base attribute value MUST be the
UN/CEFACT Unqualified Datatype or UBL Qualified Datatype as appropriate.

Example 15.

<xsd:complexType name="StreetNameType">
 <xsd:simpleContent>
 <xsd:extension base="udt:NameType"/>
 </xsd:simpleContent>
</xsd:complexType>

5.1.3.3. Datatypes

There is a one-to-one relationship between CCTS CoreComponentTypes and CCTS PrimaryRepresentationTerms.
Additionally, there are several CCTS SecondaryRepresentationTerms that are semantic refinements of their parent
CCTS PrimaryRepresentationTerms. There is a CCTS UnqualifiedDataType for each CCTS PrimaryRepresenta-
tionTerm or CCTS SecondaryRepresentationTerm. In the UBL XML Library, each CCTS UnqualifiedDatatype
is expressed as complex or simple type that is of the type of its corresponding CCTS CoreComponentType. UBL
uses the CCTS UnqualifiedDatatypes that are provided by the UN/CEFACT Unqualified Datatype (UDT) schema
module.

5.1.3.3.1. Qualified Datatypes

The data types defined in the Unqualified Datatype (UDT) schema module are intended to be suitable as the
xsd:base types for some, but not all BBIEs. As business process modeling reveals the need for specialized data
types, new qualified data types will need to be defined. These new CCTS Qualified Datatypes must each be based
on a CCTS Unqualified Datatype and must represent a semantic or technical restriction of the CCTS Unqualified
Datatype. Technical restrictions must be implemented as an xsd:restriction or as a new xsd:simpleType if the
supplementary components of the Qualified Datatype map directly to the properties of a built-in XSD data type.

[CTD6] For every CCTS Qualified Datatype used in the UBL model, a named xsd:complexType
or xsd:simpleType MUST be defined.

[CTD20] A CCTS Qualified DataType MUST be based on an CCTS Unqualified Datatype and
add some semantic and/or technical restriction to the CCTS Unqualified Datatype.

[CTD21] The name of a UBL Qualified DataType MUST be the qualifier term followed by the
name of its base CCTS Unqualified DataType with separators and spaces removed.

In accordance with rule GXS3, built-in XSD data types are used whenever possible.

[CTD22] Every Qualified Datatype based on an Unqualified Datatype xsd:complexType whose
supplementary components map directly to the properties of an XSD built-in data type

MUST be defined as an xsd:simpleType,

MUST contain one xsd:restriction element, and

MUST include an xsd:base attribute that defines the specific XSD built-in data type required for
the content component.

[CTD23] Every CCTS Qualified Datatype based on a CCTS Unqualified Datatype xsd:complex-
Type whose supplementary components do not map directly to the properties of an XSD built-
in data type

MUST be defined as an xsd:complexType,

MUST contain one xsd:simpleContent element,

29

Universal Business Language (UBL)
2.0 Naming and Design Rules

MUST contain one xsd:restriction element, and

MUST include the Unqualified Datatype as its xsd:base attribute.

[CTD24] Every CCTS Qualified Datatype based on a CCTS Unqualified Datatype xsd:simpleType

MUST contain one xsd:restriction element

MUST include the unqualified datatype as its xsd:base attribute.

5.1.3.4. Core Component Types

UBL uses UN/CEFACT's Core Component Type schema module.

5.2. Element Declarations

5.2.1. Elements Bound to Complex Types

The binding of UBL elements to their xsd:complexTypes is based on the associations identified in the UBL model.
For the BBIEs and ABIEs, the UBL elements are directly associated to their corresponding xsd:complexTypes.

[ELD3] For every class and property identified in the UBL model, a global element bound to
the corresponding xsd:complexType MUST be declared.

Example 16.

For the Party.Details object class, a complex type/global element declaration pair is created through the declaration
of a Party element that is of type PartyType.

The element thus created can be reused in the building of new business messages. The complex type thus created
can be used through the declaration of new elements of that type in the building of both new and contextualized
business messages.

Example 17.

<xsd:element name="SupplierParty" type="SupplierPartyType"/>
 <xsd:complexType name="SupplierPartyType"/>
 ...
</xsd:complexType>

5.2.2. Elements Representing ASBIEs

An ASBIE is not a class like an ABIE. Rather, it is an association between two classes, and therefore the element
declaration binds the element to the xsd:complexType of the associated ABIE. There are two types of ASBIEs —
those that have qualifiers in the object class, and those that do not.

[ELD4] When a CCTS ASBIE is unqualified, it is bound via reference to the global CCTS ABIE
element with which it is associated.

[ELD11] When a CCTS ASBIE is qualified, a new element MUST be declared and bound to
the xsd:complexType of its associated CCTS ABIE.

5.3. Code List Import
[ELD6] The code list xsd:import element MUST contain the namespace and schema location
attributes.

30

Universal Business Language (UBL)
2.0 Naming and Design Rules

5.4. Empty Elements
[ELD7] Empty elements MUST not be declared, except in the case of extension where the UBL
Extensions element is used.

6. Code Lists
The following rules apply to the use of code lists in UBL.

[CDL1] All UBL codes MUST be part of a UBL or externally maintained code list.

The majority of code lists are owned and maintained by external agencies. UBL makes maximum use of such ex-
ternal code lists where they exist.

[CDL2] The UBL Library SHOULD identify and use external standardized code lists rather than
develop its own UBL-native code lists.

In some cases, UBL may extend an existing code list to meet specific business requirements. In others cases, UBL
may create and maintain a code list where a suitable code list does not exist in the public domain. Both of these
types of code lists would be considered UBL-internal code lists.

[CDL3] The UBL Library MAY design and use an internal code list where an existing external
code list needs to be extended, or where no suitable external code list exists.

7. Miscellaneous XSD Rules
As a business standard vocabulary, UBL requires consistency in its development. The number of UBL schema
developers will expand over time. To ensure consistency, it is necessary to address the optional features in XSD
that are not addressed elsewhere.

7.1. xsd:simpleType
XSD provides for 44 built-in data types expressed as simple types. For maximum reuse, these built-in simple types
should be used wherever possible.

[GXS3] Built-in xsd:simpleTypes SHOULD be used wherever possible.

7.2. Namespace Declaration
XSD allows any prefixes to be used in referencing its namespaces. To ensure consistency, UBL has adopted the
generally accepted convention of using the "xsd" prefix for the XSD namespace.

[GXS4] All XSD constructs in UBL schema and schema modules MUST contain the following
namespace declaration on the xsd:schema element:

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

7.3. xsd:substitutionGroup
The xsd:substitutionGroup feature enables a type definition to identify substitution elements in a group. Although
a useful feature in document-centric XML applications, this feature is not used by UBL.

[GXS5] The xsd:substitutionGroup feature MUST NOT be used.

31

Universal Business Language (UBL)
2.0 Naming and Design Rules

7.4. xsd:final
UBL does not use extensions in its normative schemas. Extensions are allowed by customizers as outlined in the
Guidelines for Customization. In cases where type definitions are inappropriate for any customization, the xsd:final
attribute is used.

[GXS6] The xsd:final attribute MUST be used to control extensions where there is a desire to
prohibit further extensions.

7.5. xsd: notation
The UBL schema model does not require or support the use of xsd:notation.

[GXS7] xsd:notation MUST NOT be used.

7.6. xsd:all
When xsd:all is used, elements can occur in any order, are always optional, and can never occur more than once.
Such restrictions are inconsistent with the applications of UBL.

[GXS8] xsd:all MUST NOT be used.

7.7. xsd:choice
xsd:choice allows one of a set of alternatives to appear in a document instance. This is useful in some contexts but
xsd:choice cannot be extended and therefore is not recommended.

[GXS9] The xsd:choice element SHOULD NOT be used where customization and extensibility
are a concern.

7.8. xsd:include
xsd:include may be used in accordance with rule GXS10.

[GXS10] xsd:include can only be used when the including schema is in the same namespace as
the included schema.

7.9. xsd:union
The xsd:union feature provides a mechanism whereby a datatype is created as a union of two or more existing
datatypes. As UBL strictly adheres to the use of CCTS Datatypes that are explicitly declared in the UBL library,
this feature is inappropriate except for code lists.

[GXS11] The xsd:union technique MUST NOT be used except for code lists.

7.10. xsd:appinfo
The xsd:appinfo feature is used by schemas to convey processing instructions to a processing application, stylesheet,
or other tool. Some users of UBL believe that this technique poses a security risk and have employed techniques
for stripping xsd:appinfo from schemas. As UBL is committed to ensuring the widest possible target audience for
its XML library, this feature is used only to convey information.

[GXS12] UBL schemas SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST be used
only to convey non-normative information.

32

Universal Business Language (UBL)
2.0 Naming and Design Rules

7.11. xsd:schemaLocation
UBL is an international standard that will be used in perpetuity by companies around the globe. It is important
that these users have unfettered access to all UBL schemas.

[GXS15] Each xsd:schemaLocation attribute declaration MUST contain a system-resolvable
URL, which at the time of release from OASIS shall be a relative URL referencing the location
of the schema or schema module in the release package.

7.12. xsd:nillable
[GXS16] The built in xsd:nillable attribute MUST NOT be used for any UBL declared element.

7.13. xsd:any
UBL disallows the use of xsd:any because this feature permits the introduction of unknown attributes into an XML
instance. UBL intends that all constructs within an instance be governed by the schemas describing that instance,
and therefore xsd:any is not allowed outside of the ExtensionContentType definition.

[GXS14] xsd:any MUST NOT be used except within the ExtensionContentType type definition,
and with xsd:processContents= "skip" for non-UBL namespaces.

7.14. Extension and Restriction
UBL recognizes the value of supporting extension and restriction of its core schema library by customizers. The
UBL schema extension and restriction recommendations are discussed in the Guidelines for the Customization of
UBL 1.0 Schemas (SchCust) available as part of the UBL 1.0 Standard.

[GXS13] Complex type extension or restriction MAY be used where appropriate.

8. Instance Documents
In addition to the UBL 2.0 document constraints formally expressed in the schemas, UBL mandates several other
rules governing conformant UBL 2.0 instances that cannot be expressed using XSD. These additional UBL rules
address instance validation, character encoding, and empty elements.

Note that these rules first appeared in the OASIS UBL 1.0 and UBL 1.0 NDR Standards, as well as in the Universal
Business Language v2.0 release package. They are copied here for reference and put in this section to separate
them from the schema-specific rules contained in the rest of the NDR.

The UBL library and document schemas are targeted at supporting business information exchanges. Business in-
formation exchanges require a high degree of precision to ensure that application processing and corresponding
business cycle actions are reflective of the purpose, intent, and information content agreed to by both trading
partners. Schemas provide the necessary mechanism for ensuring that instance documents do in fact support these
requirements.

[IND1] All UBL instance documents MUST validate to a corresponding UBL schema.

XML supports a wide variety of character encodings. Processors must understand which character encoding is
employed in each XML document. XML assumes a default value of UTF-8 for character encoding, but best practice
is to always identify the character encoding being employed.

[IND2] All UBL instance documents MUST identify their character encoding within the XML
declaration.

Example:

33

Universal Business Language (UBL)
2.0 Naming and Design Rules

<?xml version="1.0" encoding="UTF-8"?>

UBL, as an OASIS TC, is obligated to conform to agreements OASIS has entered into. OASIS is a liaison member
of the ISO IEC ITU UN/CEFACT eBusiness Memorandum of Understanding Management Group (MOUMG).
Resolution 01/08 (MOU/MG01n83) requires the use of UTF-8.

[IND3] In conformance with ISO IEC ITU UN/CEFACT eBusiness Memorandum of Under-
standing Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83) as agreed to by
OASIS, all UBL XML SHOULD be expressed using UTF-8.

Example:

<?xml version="1.0" encoding="UTF-8"?>

Use of empty elements within XML instance documents is a source of controversy for a variety of reasons. An
empty element does not simply represent data that is missing. It may express data that is not applicable for some
reason, trigger the expression of an attribute, denote all possible values instead of just one, mark the end of a series
of data, or appear as a result of an error in XML file generation. Conversely, missing data elements can also have
meaning, for example, "data not provided by trading partner". In information exchange environments, different
trading partners may allow, require, or ban empty elements. UBL has determined that empty elements do not
provide the level of assurance necessary for business information exchanges and therefore will not be used.

[IND5] UBL conformant instance documents MUST NOT contain an element devoid of content
or containing null values, except in the case of extension, where the UBLExtensionContent ele-
ment is used.

To ensure that no attempt is made to circumvent rule IND5, UBL also prohibits attempting to convey meaning by
not conveying an element.

[IND6] The absence of a construct or data in a UBL instance document MUST NOT carry
meaning.

9. Acknowledgements
The editors thank Betty Harvey and G. Ken Holman for their assistance in producing this document.

34

Universal Business Language (UBL)
2.0 Naming and Design Rules

A. Code List Metadata (Informative)
Included here for convenience are some observations regarding instance-level code list metadata defined in UBL
2.0 schemas for the information items governed by code lists. Note that what follows are not UBL Naming and
Design Rules but rather implications of UBL's use of the UN/CEFACT Unqualified Data Type Schema Module.

For items based on the unqualified data type Amount, the attribute currencyID has the coded value, and the instance-
level metadata is one attribute:

currencyCodeListVersionID

For items based on the unqualified data type MeasureType, the attribute unitCode has the coded value, and the
instance-level metadata is one attribute:

unitCodeListVersionID

For items based on the unqualified data type QuantityType, the attribute unitCode has the coded value, and the
instance-level metadata consists of three attributes:

unitCodeListID
unitCodeListAgencyID
unitCodeListAgencyName

For an element named <xxxxxCode> based on the unqualified data type CodeType, the element has the coded
value, and the instance-level metadata consists of seven attributes:

listName
listID
listVersionID
listSchemeURI
listURI
listAgencyName
listAgencyID

For an element named <yyyyyID> based on the unqualified data type IdentifierType, the element has the coded
value, and the instance-level metadata consists of six attributes:

schemeName
schemeVersionID
schemeURI
schemeDataURI
schemeAgencyName
schemeAgencyID

All instance-level code list metadata attributes are optional and can be specified separately for each coded value
used; there are no global document-wide properties representing these attributes.

Any combination of allowable metadata attributes can be specified by the author of the UBL instance to identify
the semantics associated with the coded value in the information item. Absent any of these attributes, an imple-
mentation must make its own judgements about the implied semantics of the code based on the information
available.

In some cases, an incomplete set of metadata attributes may be enough to uniquely identify an associated code
list. For example, a listSchemeURI or schemeURI value is probably sufficient to uniquely identify, respectively,
a code or identifier. A combination of listName or listID with listVersionID for a code, or schemeName and
schemeVersionID for an identifier, would probably also be sufficient.

In the extreme case, all code list information associated with a coded value may be missing; for example:

35

Universal Business Language (UBL)
2.0 Naming and Design Rules

<cbc:DocumentCurrencyCode>USD</cbc:DocumentCurrencyCode>

There is no harm in omitting code list identification for this code value if the application can safely assume that a
value of "USD" for DocumentCurrencyCode means U.S. Dollar, which is usually a safe assumption if the instance
comes from a known trading partner.

Omission of code list metadata can be useful when it is desired to leave the exact version unspecified, as for example
when making updates to a particular code list within a particular trading community. Omitting the metadata attributes
associating instance data with a particular release of a code list makes it unnecessary to change instance generation
at the moment the update is deployed. This assumes, of course, that such changes are being managed out-of-band
by protocols within the community.

Identifying metadata should be included in the instance if the sender thinks the receiver might misinterpret the
code. And if an information item allows the union of two lists, and there happens to be an overlap between the
two lists such that one or more codes appear on both lists, then identifying metadata must be used to unambiguously
specify which code is intended.

36

Universal Business Language (UBL)
2.0 Naming and Design Rules

B. UBL-approved Acronyms and Abbreviations
(Informative)
The information included in this appendix is historical and has been included for informational purposes only.

Table B.1. Abbreviation and Acronym Table for UBL 2.0

CV2Credit Card Verification Numbering System

IDIdentifier

URIUniform Resource Identifier

UNDGUnited Nations Dangerous Goods

UBLUniversal Business Language

UUIDUniversally Unique Identifier

37

Universal Business Language (UBL)
2.0 Naming and Design Rules

C.Technical Terminology (Informative)
A collection of related pieces of business information that together convey a distinct
business meaning in a specific Business Context. Expressed in modelling terms, it is
the representation of an Object Class, in a specific Business Context.

Aggregate Business In-
formation Entity (ABIE)

Adherence to business requirements, such as valid account numbers.Application-level valida-
tion

Using parts of the library of reusable UBL components to create a new kind of business
document type.

Assembly

Defines a context in which a business has chosen to employ an information entity.Business Context

The formal description of a specific business circumstance as identified by the values
of a set of Context Categories allowing different business circumstances to be uniquely
distinguished.

An unambiguously identified, specified, referenceable, registerable, and re-useable
scenario or scenario component of a business transaction.

Business Object

The term business object is used in two distinct but related ways, with slightly different
meanings for each usage:

In a business model, business objects describe its business context. The business objects
capture business concepts and express an abstract view of the business's "real world".
The term "modeling business object" is used to designate this usage.

In a design for a software system or in program code, business objects reflect how
business concepts are represented in software. The term "system business objects" is
used to designate this usage.

The precise meaning of words from a business perspective.Business semantic(s)

A synonym under which the Core Component or Business Information Entity is com-
monly known and used in the business. A Core Component or Business Information
Entity may be known by several business terms or synonyms.

Business Term

A description of a set of objects that share the same attributes, operations, methods,
relationships, and semantics. A class may use a set of interfaces to specify collections
of operations it provides to its environment.

Class

(OMG Distilled) Shows Static structure of concepts, types, and classes. Concepts show
how users think about the world; types show interfaces of software components; classes
show implementation of software components.

Class diagram

(Rational Unified Process) A diagram that shows a collection of declarative (static)
model elements, such as classes, types, and their contents and relationships.

Officially supported scheme to describe a given Context Category.Classification scheme

A schema document corresponding to a single namespace, which is likely to include
or import schema modules.

Document schema

A building block for the creation of a semantically correct and meaningful information
exchange package. It contains only the information pieces necessary to describe a
specific concept.

Core Component

A Core Component which consists of one and only one Content Component that carries
the actual content plus one or more Supplementary Components giving an essential

Core Component Type

extra definition to the Content Component. Core Component Types do not have business
semantics.

(XSD) A descriptor of a set of values that lack identity and whose operations do not
have side effects. XSD data types include primitive pre-defined types and user-definable

Data type

38

Universal Business Language (UBL)
2.0 Naming and Design Rules

types. Pre-defined types include numbers, string, and time. User-definable types include
enumerations.

(CCTS) Defines the set of valid values that can be used for a particular Basic Core
Component Property or Basic Business Information Entity Property. It is defined by
specifying restrictions on the Core Component Type that forms the basis of the data
type.

An individual entity satisfying the description of a class or type. In XML, an individual
document of a certain type (a specific purchase order, invoice, etc.).

Instance

Additional validation checking of an instance, beyond what XSD makes available, that
relies only on constraints describable in terms of the instance and not additional business

Instance constraint check-
ing

knowledge; e.g., checking co-occurrence constraints across elements and attributes.
Such constraints might be described using Schematron, for example.

An element not at the top level that is of a complex type, only containing other elements
and attributes.

Intermediate element

A schema module that does not declare a target namespace.Internal schema module

An element containing only character data (though it may also have attributes). Note
that, because of the XSD mechanisms involved, a leaf element that has attributes must

Leaf element

be declared as having a complex type, but a leaf element with no attributes may be
declared with either a simple type or a complex type.

An element that appears inside a business message. Lower-level elements consist of
intermediate and leaf level.

Lower-level element

The logical data grouping (in a logical data model) to which a data element belongs
(ISO11179). The Object Class is the part of a Core Component's Dictionary Entry
Name that represents an activity or object in a specific Context.

Object Class

A schema module that declares a target namespace and is likely to include or import
schema modules.

Namespace schema mod-
ule

The set of rules that together comprise how the Dictionary Entry Name for Core
Components and Business Information Entities are constructed.

Naming convention

An XML Schema consists of components such as type definitions and element declar-
ations. These can be used to assess the validity of well-formed element and attribute

(XML) Schema

information items (as defined in [XSD]), and furthermore may specify augmentations
to those items and their descendants.

A schema that can be included or imported by other schemas.Schema module

Schema validation checking plus provision of default values and provision of new in-
foset properties.

Schema processing

The process of programmatically checking a document instance for adherence to an
XSD schema.

Schema validation

Relating to meaning in language; relating to the connotations of words.Semantic

An element that encloses a whole UBL business message. Note that UBL business
messages might be carried by messaging transport protocols that themselves have

Top-level element

higher-level XML structure. Thus, a UBL top-level element is not necessarily the root
element of the XML document that carries it.

Description of a set of entities that share common characteristics, relations, attributes,
and semantics.

Type

39

Universal Business Language (UBL)
2.0 Naming and Design Rules

D. References
[CCTS] ISO 15000-5 ebXML Core Components Technical Specification.

[ISONaming] ISO/IEC 11179, Final committee draft, Parts 1-6.

[RFC 2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, ht-
tp://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[SchCust] Guidelines for the Customization of UBL v1.0 Schemas, http://docs.oasis-open.org/ubl/cd-UBL-
1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html, an informative annex to the UBL 1.0 Standard.

[XML] Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, October 6, 2000.

[XSD] XML Schema, W3C Recommendations Parts 0, 1, and 2, 2 May 2001.

40

Universal Business Language (UBL)
2.0 Naming and Design Rules

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://docs.oasis-open.org/ubl/cd-UBL-1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html
http://docs.oasis-open.org/ubl/cd-UBL-1.0/doc/cm/wd-ubl-cmsc-cmguidelines-1.0.html

E. Notices
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be
claimed to pertain to the implementation or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can
be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use
of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive
Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other
proprietary rights which may cover technology that may be required to implement this specification. Please address
the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001-2009.
All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself cannot be modified in any way,
such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing
OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property
Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an AS IS basis and OASIS DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

41

Universal Business Language (UBL)
2.0 Naming and Design Rules

F. UBL NDR Checklist
The following checklist reproduces all the UBL XML naming and design rules defined in this document. The
checklist is in alphabetical sequence as follows:

• Attribute Declaration Rules (ATD)
• Code List Rules (CDL)
• ComplexType Definition Rules (CTD)
• ComplexType Naming Rules (CTN)
• Documentation Rules (DOC)
• Element Declaration Rules (ELD)
• Element Naming Rules (ELN)
• General Naming Rules (GNR)
• General Type Definition Rules (GTD)
• General XML Schema Rules (GXS)
• Instance Document Rules (IND)
• Modeling Constraints Rules (MDC)
• Naming Constraints Rules (NMC)
• Namespace Rules (NMS)
• Root Element Declaration Rules (RED)
• Schema Structure Modularity Rules (SSM)
• Standards Adherence Rules (STA)
• Versioning Rules (VER)

Code List Rules

All UBL codes MUST be part of a UBL or externally maintained code list.CDL1

The UBL Library SHOULD identify and use external standardized code lists rather than develop its
own UBL-native code lists.

CDL2

The UBL Library MAY design and use an internal code list where an existing external code list
needs to be extended, or where no suitable external code list exists.

CDL3

ComplexType Definition rules

For every class identified in the UBL model, a named xsd:complexType MUST be defined.CTD1

Every CCTS ABIE xsd:complexType definition content model MUST contain an xsd:sequence
element containing the appropriate global element declarations.

CTD2

Every CCTS BBIE Property xsd:complexType definition content model MUST contain an
xsd:simpleContent element.

CTD3

Every CCTS BBIE Property xsd:complexType content model xsd:simpleContent element MUST
consist of an xsd:extension element.

CTD4

Every CCTS BBIE Property xsd:complexType xsd:base attribute value MUST be the UN/CEFACT
Unqualified Datatype or UBL Qualified Datatype as appropriate.

CTD5

For every CCTS Qualified Datatype used in the UBL model, a named xsd:complexType or
xsd:simpleType MUST be defined.

CTD6

A CCTS Qualified DataType MUST be based on an CCTS Unqualified Datatype and add some se-
mantic and/or technical restriction to the CCTS Unqualified Datatype.

CTD20

The name of a UBL Qualified DataType MUST be the qualifier term followed by the name of its
base CCTS Unqualified DataType with separators and spaces removed.

CTD21

Every Qualified Datatype based on an Unqualified Datatype xsd:complexType whose supplementary
components map directly to the properties of an XSD built-in data type

MUST be defined as an xsd:simpleType,

CTD22

42

Universal Business Language (UBL)
2.0 Naming and Design Rules

ComplexType Definition rules

MUST contain one xsd:restriction element, and

MUST include an xsd:base attribute that defines the specific XSD built-in data type required for the
content component.

Every CCTS Qualified Datatype based on a CCTS Unqualified Datatype xsd:complexType whose
supplementary components do not map directly to the properties of an XSD built-in data type

MUST be defined as an xsd:complexType,

CTD23

MUST contain one xsd:simpleContent element,

MUST contain one xsd:restriction element, and

MUST include the Unqualified Datatype as its xsd:base attribute.

Every CCTS Qualified Datatype based on a CCTS Unqualified Datatype xsd:simpleType

MUST contain one xsd:restriction element

CTD24

MUST include the unqualified datatype as its xsd:base attribute.

For every CCTS BBIE Property identified in the UBL model, a named xsd:complexType MUST be
defined.

CTD25

Complex Type Naming rules

A UBL xsd:complexType name based on a CCTS ABIE MUST be the CCTS Dictionary Entry
Name with the separators removed and with the "Details" suffix replaced with "Type".

CTN1

A UBL xsd:complexType name based on a CCTS BBIE Property MUST be the CCTS Dictionary
Entry Name shared Property Term and its qualifiers and the Representation Term of the BBIE with
the separators removed and with the "Type" suffix appended after the Representation Term.

CTN2

A UBL xsd:complexType name based on a CCTS BBIE Property and with a CCTS BBIE Repres-
entation Term of "Text" MUST have the word "Text" removed from the end of its name.

CTN6

A UBL xsd:complexType name based on a CCTS BBIE Property and with a CCTS BBIE Repres-
entation Term of "Identifier" MUST replace "Identifier" with "ID" at the end of its name.

CTN7

A UBL xsd:complexType name based on a CCTS BBIE Property MUST remove all duplication of
words that occurs as a result of duplicate Property Terms and Representation Terms.

CTN8

Documentation rules

The xsd:documentation element for every data type MUST contain a set of annotations in the follow-
ing order (as defined in CCTS Section 7):

DOC1

• DictionaryEntryName (mandatory)
• Version (mandatory)
• Definition (mandatory)
• RepresentationTerm (mandatory)
• QualifierTerm(s) (mandatory, where used)
• UniqueIdentifier (mandatory)
• Usage Rule(s) (optional)
• Content Component Restriction (optional)

A datatype definition MAY contain one or more Content Component Restrictions to provide addi-
tional information on the relationship between the datatype and its corresponding Core Component

DOC2

Type. If used, the Content Component Restrictions MUST contain a set of annotations in the following
order:

43

Universal Business Language (UBL)
2.0 Naming and Design Rules

Documentation rules

• RestrictionType (mandatory): Defines the type of format restriction that applies to the Content
Component.

• RestrictionValue (mandatory): The actual value of the format restriction that applies to the Content
Component.

• ExpressionType (optional): Defines the type of the regular expression of the restriction value.

A datatype definition MAY contain one or more Supplementary Component Restrictions to provide
additional information on the relationship between the datatype and its corresponding Core Component

DOC3

Type. If used, the Supplementary Component Restrictions MUST contain a set of annotations in the
following order:

• SupplementaryComponentName (mandatory): Identifies the Supplementary Component to which
the restriction applies.

• RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for the Supplement-
ary Component.

The xsd:documentation element for every BBIE MUST contain a set of annotations in the following
order:

DOC4

• ComponentType (mandatory): The type of component to which the object belongs. For BBIEs
this MUST be "BBIE".

• DictionaryEntryName (mandatory): The official name of a BBIE.
• Version (optional): An indication of the evolution over time of the BBIE Entity.
• Definition (mandatory): The meaning of a BBIE.
• Cardinality (mandatory): Indicates whether the BBIE represents a not-applicable, optional, man-

datory, or repetitive characteristic of the Aggregate Business Information Entity to which it belongs.
• ObjectClassQualifier (optional): The qualifier for the Object Class.
• ObjectClass (mandatory): The Object Class containing the BBIE.
• PropertyTermQualifier (optional): A word or words which help define and differentiate a BBIE.
• PropertyTerm (mandatory): Conveys the characteristic or Property of the Object Class.
• RepresentationTerm (mandatory): Describes the form in which the BBIE is represented.
• DataTypeQualifier (optional): A meaningful name that differentiates the data type of the BBIE

from its underlying Core Component Type.
• DataType (mandatory): Defines the data type used for the BBIE.
• AlternativeBusinessTerms (optional): Any synonymous terms under which the BBIE is commonly

known and used in the business.
• Examples (optional): Examples of possible values for the BBIE.

The xsd:documentation element for every ABIE MUST contain a set of annotations in the following
order:

DOC5

• ComponentType (mandatory): The type of component to which the object belongs. For ABIEs
this MUST be "ABIE".

• DictionaryEntryName (mandatory): The official name of the ABIE .
• Version (optional): An indication of the evolution over time of the ABIE.
• Definition (mandatory): The meaning of the ABIE.
• ObjectClassQualifier (optional): The qualifier for the Object Class.
• ObjectClass (mandatory): The Object Class represented by the ABIE.
• AlternativeBusinessTerms (optional): Any synonymous terms under which the ABIE is commonly

known and used in the business.

The xsd:documentation element for every ASBIE element declaration MUST contain a set of annota-
tions in the following order:

DOC6

• ComponentType (mandatory): The type of component to which the object belongs. For ASBIEs
this MUST be "ASBIE".

44

Universal Business Language (UBL)
2.0 Naming and Design Rules

Documentation rules

• DictionaryEntryName (mandatory): The official name of the ASBIE.
• Version (optional): An indication of the evolution over time of the ASBIE.
• Definition (mandatory): The meaning of the ASBIE.
• Cardinality (mandatory): Indicates whether the ASBIE represents an optional, mandatory, or re-

petitive assocation.
• ObjectClass (mandatory): The Object Class containing the ASBIE.
• PropertyTermQualifier (optional): A word or words which help define and identify the ASBIE.
• PropertyTerm (mandatory): Represents the ASBIE contained by the Association Business Inform-

ation Entity.
• AssociatedObjectClassQualifier (optional): The Associated Object Class Qualifiers describe the

"context" of the relationship with another ABIE. That is, it is the role the contained ABIE plays
within its association with the containing ABIE.

• AssociatedObjectClass (mandatory): The Object Class at the other end of the association. It rep-
resents the ABIE contained by the ASBIE.

The xsd:documentation element for every Supplementary Component attribute declaration MUST
contain a set of annotations in the following order:

DOC8

• Name (mandatory) Name in the Registry of a Supplementary Component of a Core Component
Type.

• Definition (mandatory): An explanation of the meaning of a Supplementary Component and its
relevance for the related Core Component Type.

• Primitive type (mandatory): The PrimitiveType to be used for the representation of the value of
a Supplementary Component.

• Possible Value(s) (optional): Possible values of Supplementary Components.

The xsd:documentation element for every Supplementary Component attribute declaration containing
restrictions MUST include the following additional information appended to the information required
by DOC8:

DOC9

• Restriction Value(s) (mandatory): The actual value(s) that is (are) valid for the Supplementary
Component.

Element Declaration rules

All element declarations MUST be global.ELD2

For every class and property identified in the UBL model, a global element bound to the corresponding
xsd:complexType MUST be declared.

ELD3

When a CCTS ASBIE is unqualified, it is bound via reference to the global CCTS ABIE element
with which it is associated.

ELD4

The code list xsd:import element MUST contain the namespace and schema location attributes.ELD6

Empty elements MUST not be declared, except in the case of extension where the UBL Extensions
element is used.

ELD7

When a CCTS ASBIE is qualified, a new element MUST be declared and bound to the xsd:complex-
Type of its associated CCTS ABIE.

ELD11

The UBL Extensions element MUST be declared as the first child of the document element with
xsd:minOccurs="0".

ELD12

The UBLProfileID element MUST be declared immediately following the UBL Extensions element
with xsd:minOccurs="0".

ELD13

The UBLSubsetID element MUST be declared immediately following the UBLProfileID element
with xsd:minOccurs="0".

ELD14

45

Universal Business Language (UBL)
2.0 Naming and Design Rules

Element Naming rules

A UBL global element name based on a CCTS ABIE MUST be the same as the name of the corres-
ponding xsd:complexType to which it is bound, with the word "Type" removed.

ELN1

A UBL global element name based on a CCTS BBIE Property MUST be the same as the name of
the corresponding xsd:complexType to which it is bound, with the word "Type" removed.

ELN2

A UBL global element name based on a CCTS ASBIE MUST be the CCTS ASBIE Dictionary Entry
Name Property Term and its qualifiers and the Object Class Term and qualifiers of its associated
CCTS ABIE. All CCTS Dictionary Entry Name separators MUST be removed.

ELN3

General Naming rules

UBL XML element and type names MUST be in the English language, using the primary English
spellings provided in the Oxford English Dictionary.

GNR1

UBL XML element and type names MUST be consistently derived from CCTS conformant Dictionary
Entry Names.

GNR2

UBL XML element and type names constructed from CCTS Dictionary Entry Names MUST NOT
include periods, spaces, other separators, or characters not allowed by XSD.

GNR3

UBL XML element names and simple and complex type names MUST NOT use acronyms, abbre-
viations, or other word truncations, except those in the list of exceptions maintained and published
by the UBL TC.

GNR4

The acronyms and abbreviations listed in the UBL-approved list MUST always be used in place of
the word or phrase they represent.

GNR6

UBL XML element and type names MUST be in singular form unless the concept itself is plural.GNR7

The UpperCamelCase (UCC) convention MUST be used for naming elements and types.GNR8

The lowerCamelCase (LCC) convention MUST be used for naming attributes.GNR9

Acronyms and abbreviations at the beginning of an attribute name MUST appear in all lower case.
Acronyms and abbreviations elsewhere in an attribute name MUST appear in upper case.

GNR10

Acronyms and abbreviations MUST appear in all upper case for all element and type names.GNR11

General Type Definition Rules

All types MUST be named.GTD1

The predefined XML schema type xsd:anyType MUST NOT be used.GTD2

General XML Schema Rules

Except in the case of extension, where the "UBL Extensions" element is used, UBL schemas SHOULD
conform to the following physical layout as applicable: See .

GXS1

UBL MUST provide two schemas for each transaction. One normative schema shall be fully annotated.
One non-normative schema shall be a run-time schema devoid of documentation.

GXS2

Built-in xsd:simpleTypes SHOULD be used wherever possible.GXS3

All XSD constructs in UBL schema and schema modules MUST contain the following namespace
declaration on the xsd:schema element:

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

GXS4

The xsd:substitutionGroup feature MUST NOT be used.GXS5

The xsd:final attribute MUST be used to control extensions where there is a desire to prohibit further
extensions.

GXS6

xsd:notation MUST NOT be used.GXS7

xsd:all MUST NOT be used.GXS8

46

Universal Business Language (UBL)
2.0 Naming and Design Rules

General XML Schema Rules

The xsd:choice element SHOULD NOT be used where customization and extensibility are a concern.GXS9

xsd:include can only be used when the including schema is in the same namespace as the included
schema.

GXS10

The xsd:union technique MUST NOT be used except for code lists.GXS11

UBL schemas SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST be used only to convey
non-normative information.

GXS12

Each xsd:schemaLocation attribute declaration MUST contain a system-resolvable URL, which at
the time of release from OASIS shall be a relative URL referencing the location of the schema or
schema module in the release package.

GXS15

The built in xsd:nillable attribute MUST NOT be used for any UBL declared element.GXS16

xsd:any MUST NOT be used except within the ExtensionContentType type definition, and with
xsd:processContents= "skip" for non-UBL namespaces.

GXS14

Complex type extension or restriction MAY be used where appropriate.GXS13

Instance document rules

All UBL instance documents MUST validate to a corresponding UBL schema.IND1

All UBL instance documents MUST identify their character encoding within the XML declaration.IND2

In conformance with ISO IEC ITU UN/CEFACT eBusiness Memorandum of Understanding Man-
agement Group (MOUMG) Resolution 01/08 (MOU/MG01n83) as agreed to by OASIS, all UBL
XML SHOULD be expressed using UTF-8.

IND3

UBL conformant instance documents MUST NOT contain an element devoid of content or containing
null values, except in the case of extension, where the UBLExtensionContent element is used.

IND5

The absence of a construct or data in a UBL instance document MUST NOT carry meaning.IND6

Modelling constraint rules

The sequence of the business information entities that is expressed in the UBL model MUST be
preserved in the schema.

MDC0

UBL libraries and schemas MUST only use CCTS Core Component Types, except in the case of
extension, where the UBLExtensions element is used.

MDC1

XML mixed content MUST NOT be used except where contained in an xsd:documentation element.MDC2

Naming constraint rules

Each Dictionary Entry Name MUST define one and only one fully qualified path (FQP) for an element
or attribute.

NMC1

Namespace Rules

Every UBL-defined or -used schema module, except internal schema modules, MUST declare a
namespace using the xsd:targetNamespace attribute.

NMS1

Every UBL-defined or -used major version schema set MUST have its own unique namespace.NMS2

UBL namespaces MUST only contain UBL developed schema modules.NMS3

The namespace names for UBL schemas holding committee draft status MUST be of the form
urn:oasis:names:tc:ubl:schema:<subtype>:<document-id>

NMS4

The namespace names for UBL schemas holding OASIS Standard status MUST be of the form
urn:oasis:names:specification:ubl:schema:<subtype>:<document-id>

NMS5

UBL published namespaces MUST never be changed.NMS6

The UBL Common Aggregate Components schema module MUST reside in its own namespace.NMS7

47

Universal Business Language (UBL)
2.0 Naming and Design Rules

Namespace Rules

The UBL Common Aggregate Components schema module namespace MUST be represented by
the namespace prefix "cac" when referenced in other schemas.

NMS8

The UBL Common Basic Components schema module MUST reside in its own namespace.NMS9

The UBL Common Basic Components schema module namespace MUST be represented by the
namespace prefix "cbc" when referenced in other schemas.

NMS10

The UBL Qualified Datatypes schema module MUST reside in its own namespace.NMS15

The UBL Qualified Datatypes schema module namespace MUST be represented by the namespace
prefix "qdt" when referenced in other schemas.

NMS16

The CCTS Unqualified Datatypes schema module namespace MUST be represented by the prefix
"udt" when referenced in other schemas.

NMS17

The CommonExtensionComponents schema module namespace MUST be represented by the
namespace prefix "ext" when referenced in other schemas.

NMS18

Root element declaration rules

The root element MUST be the only global element declared in the document schema.RED2

Schema structure modularity rules

UBL schema expressions MAY be split into multiple schema modules.SSM1

A schema in one UBL namespace that is dependent upon type definitions or element declarations
in another schema namespace MUST only import that schema.

SSM2

A schema in one UBL namespace that is dependent upon type definitions or element declarations
defined in another schema namespace MUST NOT import the internal schema modules of that
schema.

SSM3

All UBL internal schema modules MUST be in the same namespace as their corresponding document
schema.

SSM6

Each UBL internal schema module MUST be named <ParentSchemaModuleName><InternalS-
chemaModuleFunction>

SSM7

UBL schema modules MAY be created for reusable components.SSM8

A schema module defining all UBL Common Aggregate Components MUST be created.SSM9

The UBL Common Aggregate Components schema module MUST be identified as CommonAg-
gregateComponents in the document name within the schema header.

SSM10

A schema module defining all UBL Common Basic Components MUST be created.SSM11

The UBL Common Basic Components schema module MUST be identified as CommonBasicCom-
ponents in the document name within the schema header.

SSM12

A schema module defining all UBL Qualified Datatypes MUST be created.SSM18

The UBL Qualified Datatypes schema module MUST be identified as QualifiedDatatypes in the
document name in the schema header.

SSM19

The UBL Qualified Datatypes schema module MUST import the CCTS Unqualified Datatypes
schema module.

SSM20

The UBL extension schema module MUST be identified as CommonExtensionComponents in the
document name within the schema header.

SSM21

Versioning rules

Every UBL schema module major version MUST have an RFC 3121 document-id of the form
<modulename>-<major>

VER2

48

Universal Business Language (UBL)
2.0 Naming and Design Rules

Versioning rules

Every minor version release of a UBL schema module MUST have a document-id of the form
<modulename>-<major>

VER4

For UBL minor version changes, the namespace name MUST not change.VER5

Every UBL schema module major version number MUST be a sequentially assigned integer greater
than zero.

VER6

Every UBL schema module minor version number MUST be a sequentially assigned, non-negative
integer.

VER7

Every major version release of a UBL schema module MUST capture its version number in the
xsd:version attribute of the xsd:schema element in the form <major>.0

VER12

Every minor version release of a UBL schema module MUST capture its version information in the
xsd:version attribute in the form <major>.<non-zero>

VER14

Every UBL document schema MUST declare an optional element named UBLVersionID immediately
following the optional UBL Extensions element.

VER15

49

Universal Business Language (UBL)
2.0 Naming and Design Rules

