

draft-sstc-bindings-model-09 1 10 January 2002

 1

Bindings and Profiles for the OASIS Security 2

Assertion Markup Language (SAML) 3

Document identifier: draft-sstc-bindings-model-09 4

Location: http://www.oasis-open.org/committees/security/docs 5

Publication date: 10 January 2002 6

Maturity Level: Committee working draft 7

Send comments to: security-services-comment@lists.oasis-open.org unless 8
you are subscribed to the security-services list for committee members -- send comments 9
there if so. Note: Before sending messages to the security-services-comment list, you must first subscribe. To subscribe, 10
send an email message to security-services-comment-request@lists.oasis-open.org with the word "subscribe" as the body of 11
the message. 12

Contributors: 13

Bob Blakley, Tivoli 14
Scott Cantor, Ohio State University 15
Marlena Erdos, Tivoli 16
Chris Ferris, Sun Microsystems 17
Simon Godik, Crosslogix 18
Jeff Hodges, Oblix 19
Prateek Mishra, Netegrity, editor (pmishra@netegrity.com) 20
Eve Maler, Sun Microsystems 21
RL “Bob” Morgan, University of Washington 22
Tim Moses, Entrust 23
Evan Prodromou, Securant 24
Irving Reid, Baltimore 25
Krishna Sankar, Cisco Systems 26

 27

Rev Date By
Whom What

05 18 August 2001 Prateek
Mishra

Bindings model draft

0.6 8 November
2001

Prateek
Mishra

Removed SAML HTTP binding, removed artifact PUSH case, updated SOAP profile
based on Blakley note

0.7 3 December
2001

Prateek
Mishra

Re-structured based on F2F#5 comments; separated discussion and normative
language

0.8 24 December
2001

Eve Maler,
Prateek
Mishra

Edited for public consumption; Incorporates comments from reviewers (Tim, Simon,
Irving) and all f2f#5 changes; Developmental edit on the back half of the draft, plus
random small edits to the whole document

draft-sstc-bindings-model-09 2 10 January 2002

0.9 9 January
2002

Prateek
Mishra

Includes “required information” for each binding and profile; includes Tim’s
alternative artifact format

 28

29

draft-sstc-bindings-model-09 3 10 January 2002

 29

Bindings and Profiles for the OASIS Security Assertion Markup Language (SAML) 1 30

Introduction ... 4 31

Protocol Binding and Profile Concepts... 4 32

Notation... 4 33

Specification of Additional Protocol Bindings and Profiles ... 5 34

Guidelines for Specifying Protocol Bindings and Profiles ... 5 35

Process Framework for Describing and Registering Protocol Bindings and Profiles................. 6 36

Protocol Bindings.. 6 37

SOAP Binding for SAML... 6 38

Required Information .. 7 39

Protocol-Independent Aspects of the SAML SOAP Binding ... 7 40

Use of SOAP over HTTP.. 9 41

Profiles .. 11 42

Web Browser SSO Profiles for SAML ... 11 43

Browser/Artifact Profile of SAML ... 13 44

Browser/POST Profile of SAML.. 20 45

SOAP Profile of SAML .. 24 46

Required Information .. 24 47

SOAP Headers... 25 48

SAML Errors... 25 49

Security Considerations... 25 50

Use of SSL 3.0 or TLS 1.0 .. 30 51

SAML SOAP Binding... 30 52

Web Browser Profiles for SAML.. 30 53

References ... 30 54

URL Size Restriction (Non-Normative) ... 32 55

Alternative SAML Artifact Format... 33 56

Required Information .. 33 57

Format Details ... 33 58

Appendix A. Notices .. 35 59

 60

 61

draft-sstc-bindings-model-09 4 10 January 2002

Introduction 62

This document specifies protocol bindings and profiles for the use of SAML assertions and 63
request-response messages in communications protocols and frameworks. 64

A separate specification [SAMLCore] defines the SAML assertions and request-response 65
messages themselves. 66

Protocol Binding and Profile Concepts 67

Mappings from SAML request-response message exchanges into standard messaging or 68
communication protocols are called SAML protocol bindings (or just bindings). An instance of 69
mapping SAML request-response message exchanges into a specific protocol <FOO> is termed 70
a <FOO> binding for SAML or a SAML <FOO> binding. 71

For example, an HTTP binding for SAML describes how SAML request and response message 72
exchanges are mapped into HTTP message exchanges. A SAML SOAP binding describes how 73
SAML request and response message exchanges are mapped into SOAP message exchanges. 74

Sets of rules describing how to embed and extract SAML assertions into a framework or 75
protocol are called profiles of SAML. A profile describes how SAML assertions are embedded in 76
or combined with other objects (for example, files of various types, or protocol data units of 77
communication protocols) by an originating party, communicated from the originating site to a 78
destination, and subsequently processed at the destination. A particular set of rules for 79
embedding SAML assertions into and extracting them from a specific class of <FOO> objects is 80
termed a <FOO> profile of SAML. 81

For example, a SOAP profile of SAML describes how SAML assertions can be added to SOAP 82
messages, how SOAP headers are affected by SAML assertions, and how SAML-related error 83
states should be reflected in SOAP messages. 84

The intent of this specification is to specify a selected set of bindings and profiles in sufficient 85
detail to ensure that independently implemented products will interoperate. 86

For other terms and concepts that are specific to SAML, refer to the SAML glossary 87
[SAMLGloss]. 88

Notation 89

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 90
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 91
specification are to be interpreted as described in IETF RFC 2119 [RFC2119]. 92

Listings of productions or other normative code appear like this.93
 94

Example code listings appear like this.95

Note: Non-normative notes and explanations appear like this. 96

draft-sstc-bindings-model-09 5 10 January 2002

Conventional XML namespace prefixes are used throughout this specification to stand for their 97
respective namespaces as follows, whether or not a namespace declaration is present in the 98
example: 99

• The prefix saml: stands for the SAML assertion namespace [SAMLCore]. 100

• The prefix samlp: stands for the SAML request-response protocol namespace 101
[SAMLCore]. 102

• The prefix ds: stands for the W3C XML Signature namespace, 103
http://www.w3.org/2000/09/xmldsig# [XMLSig]. 104

• The prefix SOAP-ENV: stands for the SOAP 1.1 namespace, 105
http://schemas.xmlsoap.org/soap/envelope [SOAP1.1]. 106

This specification uses the following typographical conventions in text: <SAMLElement>, 107
<ns:ForeignElement>, Attribute, OtherCode. In some cases, angle brackets are used to 108
indicate nonterminals, rather than XML elements; the intent will be clear from the context. 109

Specification of Additional Protocol Bindings 110

and Profiles 111

This specification defines a selected set of protocol bindings and profiles, but others will need to 112
be developed. It is not possible for the OASIS SAML Technical Committee to standardize all of 113
these additional bindings and profiles for two reasons: it has limited resources and it does not 114
own the standardization process for all of the technologies used. The following sections offer 115
guidelines for specifying bindings and profiles and a process framework for describing and 116
registering them. 117

Guidelines for Specifying Protocol Bindings and Profiles 118

This section provides a checklist of issues that MUST be addressed by each protocol binding and 119
profile. 120

1. Describe the set of interactions between parties involved in the binding or profile. Any 121
restriction on applications used by each party and the protocols involved in each 122
interaction must be explicitly called out. 123

2. Identify the parties involved in each interaction, including: how many parties are 124
involved, and whether intermediaries may be involved. 125

3. Specify the method of authentication of parties involved in each interaction, including 126
whether authentication is required and acceptable authentication types. 127

4. Identify the level of support for message integrity. What mechanisms are used to ensure 128
message integrity? 129

draft-sstc-bindings-model-09 6 10 January 2002

5. Identify the level of support for confidentiality, including whether a third party may view 130
the contents of SAML messages and assertions, whether the binding or profile requires 131
confidentiality and the mechanisms recommended for achieving confidentiality. 132

6. Identify the error states, including the error states at each participant, especially those that 133
receive and process SAML assertions or messages. 134

7. Identify security considerations, including analysis of threats and description of 135
countermeasures. 136

Process Framework for Describing and Registering Protocol 137

Bindings and Profiles 138

For any new protocol binding or profile to be interoperable, it needs to be openly specified. The 139
OASIS SAML Technical Committee will maintain a registry and repository of submitted 140
bindings and profiles titled “Additional Bindings and Profiles” at the SAML website 141
(http://www.oasis-open.org/committees/security/) in order to keep the SAML community 142
informed. The Committee will also provide instructions for submission of bindings and profiles 143
by OASIS members. 144

When a profile or protocol binding is registered, the following information MUST be supplied: 145

1. Identification: Specify a URI that uniquely identifies this protocol binding or profile. 146

2. Contact information: Specify the postal or electronic contact information for the author of 147
the protocol binding or profile. 148

3. Description: Provide a text description of the protocol binding or profile. The description 149
SHOULD follow the guidelines in Section 0. 150

4. Updates: Provide references to previously registered protocol bindings or profiles that the 151
current entry improves or obsoletes. 152

Protocol Bindings 153

The following sections define SAML protocol bindings sanctioned by the OASIS SAML 154
Committee. Only one binding, the SAML SOAP binding, is defined. 155

SOAP Binding for SAML 156

 157

SOAP (Simple Object Access Protocol) 1.1 [SOAP1.1] is a specification for RPC-like 158
interactions and message communications using XML and HTTP. It has three main parts. One is 159
a message format that uses an envelope and body metaphor to wrap XML data for transmission 160
between parties. The second is a restricted definition of XML data for making strict RPC-like 161
calls through SOAP, without using a predefined XML schema. Finally, it provides a binding for 162
SOAP messages to HTTP and extended HTTP. 163

draft-sstc-bindings-model-09 7 10 January 2002

The SAML SOAP binding defines how to use SOAP to send and receive SAML requests and 164
responses. Section 4.2 of this specification ("SOAP Profile of SAML") defines how to use 165
SAML as a security mechanism for SOAP message exchanges. In other words, the former 166
describes using SAML over SOAP, and the latter describes using SAML for SOAP. 167

Like SAML, SOAP can be used over multiple underlying transports. This binding has protocol-168
independent aspects, but also calls out the use of SOAP over HTTP as REQUIRED (mandatory 169
to implement). 170

Required Information 171

Identification: 172

http://www.oasis-open.org/security/draft-sstc-bindings-model-0.9/bindings/SOAP-binding 173

Contact information: 174

security-services-comment@lists.oasis-open.org 175

Description: Given below. 176

Updates: None. 177

Protocol-Independent Aspects of the SAML SOAP Binding 178

The following sections define aspects of the SAML SOAP binding that are independent of the 179
underlying protocol, such as HTTP, on which the SOAP messages are transported. 180

Basic Operation 181

SOAP messages consist of three elements: an envelope, header data, and a message body. SAML 182
request-response protocol elements MUST be enclosed within the SOAP message body. 183

SOAP 1.1 also defines an optional data encoding system. This system is not used within the 184
SAML SOAP binding. This means that SAML messages can be transported using SOAP without 185
re-encoding from the "standard" SAML schema to one based on the SOAP encoding. 186

The system model used for SAML conversations over SOAP is a simple request-response model. 187

1. A system entity acting as a SAML requester transmits a SAML <Request> element 188
within the body of a SOAP message to a system entity acting as a SAML responder. The 189
SAML requester MUST NOT include more than one SAML request per SOAP message 190
or include any additional XML elements in the SOAP body. 191

2. The SAML responder MUST return either a <Response> element within the body of 192
another SOAP message or a SOAP fault code. The SAML responder MUST NOT 193
include more than one SAML response per SOAP message or include any additional 194
XML elements in the SOAP body. If a SAML responder cannot, for some reason, process 195
a SAML request, it MUST return a SOAP fault code. SOAP fault codes MUST NOT be 196
sent for errors within the SAML problem domain, for example, inability to find an 197
extension schema or as a signal that the subject is not authorized to access a resource in 198

draft-sstc-bindings-model-09 8 10 January 2002

an authorization query. (SOAP 1.1 faults and fault codes are discussed in [SOAP1.1] 199
§4.1.) 200

 201

On receiving a SAML response in a SOAP message, the SAML requester MUST NOT send a 202
fault code or other error messages to the SAML responder. Because the format for the message 203
interchange is a simple request-response pattern, adding additional items such as error conditions 204
would needlessly complicate the protocol. 205

SOAP Headers 206

A SAML requester in a SAML conversation over SOAP MAY add arbitrary headers to the 207
SOAP message. This binding does not define any additional SOAP headers. 208

Note: The reason other headers need to be allowed is that some SOAP 209
software and libraries might add headers to a SOAP message that are out of 210
the control of the SAML-aware process. Also, some headers might be needed 211
for underlying protocols that require routing of messages. 212

A SAML responder MUST NOT require any headers for the SOAP message. 213

Note: The rationale is that requiring extra headers will cause fragmentation 214
of the SAML standard and will hurt interoperability. 215

Authentication 216

Authentication of both the SAML requester and responder is OPTIONAL and depends on the 217
environment of use. Authentication protocols available from the underlying substrate protocol 218
MAY be utilized to provide authentication. Section 3.1.2.2 describes authentication in the SOAP 219
over HTTP environment. 220

Message Integrity 221

Message integrity of both SAML request and response is OPTIONAL and depends on the 222
environment of use. The security layer in the underlying substrate protocol MAY be used to 223
ensure message integrity. Section 3.1.2.3 describes support for message integrity in the SOAP 224
over HTTP environment. 225

Confidentiality 226

Confidentiality of both SAML request and response is OPTIONAL and depends on the 227
environment of use. The security layer in the underlying substrate protocol MAY be used to 228
ensure message confidentiality. Section 3.1.2.4 describes support for confidentiality in the SOAP 229
over HTTP environment. 230

draft-sstc-bindings-model-09 9 10 January 2002

 Use of SOAP over HTTP 231

A SAML processor that claims conformance to the SAML SOAP binding MUST implement 232
SAML over SOAP over HTTP. This section describes certain specifics of using SOAP over 233
HTTP, including HTTP headers, error reporting, authentication, message integrity and 234
confidentiality. 235

The HTTP binding for SOAP is described in [SOAP1.1] §6.0. It requires the use of a 236
SOAPAction header as part of a SOAP HTTP request. A SAML responder MUST NOT depend 237
on the value of this header. A SAML requester MAY set the value of SOAPAction header as 238
follows: 239

http://www.oasis-open.org/committees/security240

 HTTP Headers 241

HTTP proxies MUST NOT cache responses carrying SAML assertions. 242

Both of the following conditions apply when using HTTP 1.1: 243

• If the value of the Cache-Control header field is not set to no-store, then the SAML 244
responder MUST NOT include the Cache-Control header field in the response. 245

• If the Expires response header field is not disabled by a Cache-Control header field 246
with a value of no-store, then the Expires field SHOULD NOT be included. 247

There are no other restrictions on HTTP headers. 248

Authentication 249

The SAML requester and responder MUST implement the following authentication methods: 250

1. No client or server authentication. 251

2. HTTP basic client authentication [RFC2617] with and without SSL 3.0 or TLS 1.0. 252

3. HTTP over SSL 3.0 or TLS 1.0 (see Section 0) server authentication with a server-side 253
certificate. 254

4. HTTP over SSL 3.0 or TLS 1.0 client authentication with a client-side certificate. 255

If a SAML responder uses SSL 3.0 or TLS 1.0, it MUST use a server-side certificate. 256

Message Integrity 257

When message integrity needs to be guaranteed, SAML responders MUST use HTTP over SSL 258
3.0 or TLS1.0 (see Section 0) with a server-side certificate. 259

Message Confidentiality 260

When message confidentiality is required, SAML responders MUST use HTTP over SSL 3.0 or 261
TLS 1.0 (see Section 0) with a server-side certificate. 262

draft-sstc-bindings-model-09 10 10 January 2002

Security Considerations 263

Before deployment, each combination of authentication, message integrity and confidentiality 264
mechanisms SHOULD be analyzed for vulnerability in the context of the deployment 265
environment. See the SAML security considerations document [SAMLSec] for a detailed 266
discussion. 267

RFC 2617 [RFC2617] describes possible attacks in HTTP environment using basic and 268
message-digest authentication schemes. 269

Error Reporting 270

A SAML responder that refuses to perform a message exchange with the SAML requester 271
SHOULD return a "403 Forbidden" response. In this case, the content of the HTTP body is not 272
significant. 273

As described in [SOAP1.1] § 6.2, in the case of a SOAP error while processing a SOAP request, 274
the SOAP HTTP server MUST return a "500 Internal Server Error" response and include a 275
SOAP message in the response with a SOAP fault element. This type of error SHOULD be 276
returned for SOAP-related errors detected before control is passed to the SAML processor, or 277
when the SOAP processor reports an internal error (for example, the SOAP XML namespace is 278
incorrect, the SAML schema cannot be located, the SOAP message signature does not validate, 279
and so on). 280

In the case of a SAML processing error, the SOAP HTTP server MUST respond with "200 OK" 281
and include a SAML-specified error description as the only child of the <SOAP-ENV:Body> 282
element. For more information about SAML error codes, see the SAML assertion and protocol 283
specification [SAMLCore]. 284

Example SAML Message Exchange Using SOAP over HTTP 285

Following is an example of a request that asks for an assertion containing an authentication 286
statement from a SAML authentication authority. 287

POST /SamlService HTTP/1.1288
Host: www.example.com289
Content-Type: text/xml290
Content-Length: nnn291
SOAPAction: http://www.oasis-open.org/committees/security292
<SOAP-ENV:Envelope293

xmlns:SOAP-ENV=”http://scehams.xmlsoap.org/soap/envelope/”>294
<SOAP-ENV:Body>295

<samlp:Request xmlns:samlp:=”…” xmlns:saml=”…” xmlns:ds=”…”>296
<ds:Signature> … </ds:Signature>297
<samlp:AuthenticationQuery>298
…299
</samlp:AuthenticationQuery>300

</samlp:Request>301
</SOAP-ENV:Body>302

</SOAP-ENV:Envelope>303
Following is an example of the corresponding response, which supplies an assertion containing 304
authentication statement as requested. 305

HTTP/1.1 200 OK306

draft-sstc-bindings-model-09 11 10 January 2002

Content-Type: text/xml307
Content-Length: nnnn308

309
<SOAP-ENV:Envelope310

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>311
<SOAP-ENV:Body>312

<samlp:Response xmlns:samlp=”…” xmlns:saml=”…” xmlns:ds=”…”313
StatusCode=”Success”>314

<ds:Signature> … </ds:Signature>315
<saml:Assertion>316

<saml:AuthenticationStatement>317
…318
</saml:AuthenticationStatement>319

</saml:Assertion>320
</SOAP-Env:Body>321

</SOAP-ENV:Envelope>322

Profiles 323

The following sections define profiles for SAML that are sanctioned by the OASIS SAML 324
Committee. Three profiles are defined: 325

• Two web browser-based profiles that are designed to support single sign-on (SSO), 326
supporting Scenario 1-1 of the SAML requirements document [SAMLReqs]: 327

o The browser/artifact profile of SAML 328

o The browser/POST profile of SAML 329

• A SOAP profile of SAML, supporting Scenarios 3-1 and 3-3 of the SAML requirements 330
document. 331

For each type of profile, a section describing the threat model and relevant countermeasures is 332
also included. 333

Web Browser SSO Profiles for SAML 334

In the scenario supported by the web browser SSO profiles, a web user authenticates herself to a 335
source site. The web user then uses a secured resource at a destination site, without directly 336
authenticating to the destination site. 337

The following assumptions are made about this scenario for the purposes of these profiles: 338

• The user is using a standard commercial browser and has authenticated to a source site 339
outside the scope of SAML. 340

• The source site has some form of security engine in place that can track locally 341
authenticated users [WEBSSO]. Typically, this takes the form of a session that might be 342
represented by an encrypted cookie or an encoded URL or by the use of some other 343
technology [SESSION]. This is a substantial requirement but one that is met by a large 344
class of security engines. 345

At some point, the user attempts to access a target resource available from the destination site, 346
and subsequently, through one or more steps (for example, redirection), arrives at an inter-site 347
transfer service (which may be associated with one or more URIs) at the source site. Starting 348

draft-sstc-bindings-model-09 12 10 January 2002

from this point, the web browser SSO profiles describe a canonical sequence of HTTP exchanges 349
that transfer the user browser to an assertion consumer service at the destination site. 350
Information about the SAML assertions provided by the source site and associated with the user, 351
and the desired target, is conveyed from the source to the destination site by the protocol 352
exchange. 353

The assertion consumer service at the destination site can examine both the assertions and the 354
target information and determine whether to allow access to the target resource, thereby 355
achieving web SSO for authenticated users originating from a source site. Often, the destination 356
site also utilizes a security engine that will create and maintain a session, possibly utilizing 357
information contained in the source site assertions, for the user at the destination site. 358

The following figure illustrates this basic template for achieving SSO. 359

1. User authenticates to
source site

2. User accesses inter-site
transfer services with target
information

3. User accesses assertion consumer service with information
about SAML assertions and target

4. User obtains access to desired resource, OR is given an
error message

Browser Source Site Destination
Site

 360

Two HTTP-based techniques are used in the web browser SSO profiles for conveying 361
information from one site to another via a standard commercial browser. 362

• SAML artifact: A SAML artifact of “small” bounded size is carried as part of a URL query 363
string such that, when the artifact is conveyed to the source site, the artifact unambiguously 364
references an assertion. The artifact is conveyed via redirection to the destination site, which 365
then acquires the referenced assertion by some further steps. Typically, this involves the use 366
of a registered SAML protocol binding. This technique is used in the browser/artifact profile 367
of SAML. 368

• Form POST: SAML assertions are uploaded to the browser within an HTML form and 369
conveyed to the destination site as part of an HTTP POST payload when the user submits the 370
form. This technique is used in the browser/POST profile of SAML. 371

Cookies are not employed in any profile, as cookies impose the limitation that both the source 372
and destination site belong to the same "cookie domain." 373

draft-sstc-bindings-model-09 13 10 January 2002

In the discussion of the web browser SSO profiles, the term SSO assertion will be used to refer 374
to an assertion that has a <saml:Conditions> element with NotBefore and NotOnOrAfter 375
attributes present and that contains one or more authentication statements. 376

Browser/Artifact Profile of SAML 377

Required Information 378

Identification: 379

http://www.oasis-open.org/security/draft-sstc-bindings-model-0.9/profiles/artifact-01 380

Contact information: 381

security-services-comment@lists.oasis-open.org 382

Description: Given below. 383

Updates: None. 384

Preliminaries 385

The browser/artifact profile of SAML relies on a reference to the needed assertion traveling in a 386
SAML artifact, which the destination site must dereference from the source site in order to 387
determine whether the user is authenticated. 388

Note: The need for a “small’’ SAML artifact is motivated by restrictions on 389
URL size imposed by commercial web browsers. While RFC 2616 390
[RFC2616] does not specify any restrictions on URL length, in practice 391
commercial web browsers and application servers impose size constraints on 392
URLs, for a maximum size of approximately 2000 characters (see Section 0). 393
Further, as developers will need to estimate and set aside URL “real estate” 394
for the artifact, it is important that the artifact have a bounded size, that is, 395
with predefined maximum size. These measures ensure that the artifact can 396
be reliably carried as part of the URL query string and thereby transferred 397
successfully from source to destination site. 398

The browser/artifact profile consists of a single interaction among three parties (a user equipped 399
with a browser, a source site, and a destination site), with a nested sub-interaction between two 400
parties (the source site and the destination site). The interaction sequence is shown in the 401
following figure, with the following sections elucidating each step. 402

 403

draft-sstc-bindings-model-09 14 10 January 2002

Step 1

Browser Source Site Destination
Site

Step 2

Step 3

Step 4

Step 5

Step 6
 404

Terminology from RFC 1738 [RFC1738] is used to describe components of a URL. An HTTP 405
URL has the following form: 406

http://<HOST>:<port>/<path>?<searchpart>407
The following sections specify certain portions of the <searchpart> component of the URL. 408
Ellipses will be used to indicate additional but unspecified portions of the <searchpart> 409
component. 410

HTTP requests and responses MUST be drawn from either HTTP 1.1 [RFC2616] or HTTP 1.0 411
[RFC1945]. Distinctions between the two are drawn only when necessary. 412

Step 1: Accessing the Inter-Site Transfer Service 413

In step 1, the user’s browser accesses the inter-site transfer service, with information about the 414
desired target at the destination site attached to the URL. 415

No normative form is given for step 1. It is RECOMMENDED that the HTTP request take the 416
following form: 417

GET http://<inter-site transfer host name and path>?TARGET=<Target>…<HTTP-Version>418
<other HTTP 1.0 or 1.1 components>419
Where: 420

<inter-site transfer host name and path> 421
This provides the host name, port number, and path components of an inter-site transfer URL 422
at the source site. 423

Target=<Target> 424
This name-value pair occurs in the <searchpart> and is used to convey information about 425
the desired target resource at the destination site. 426

Confidentiality and message integrity MUST be maintained in step 1. 427

draft-sstc-bindings-model-09 15 10 January 2002

Step 2: Redirecting to the Destination Site 428

In step 2, the source site’s inter-site transfer service responds and redirects the user’s browser to 429
the assertion consumer service at the destination site. 430

The HTTP response MUST take the following form: 431

<HTTP-Version> 302 <Reason Phrase>432
<other headers>433
Location : http://<assertion consumer host name and path>?<SAML searchpart>434
<other HTTP 1.0 or 1.1 components>435
Where: 436

<assertion consumer host name and path> 437
This provides the host name, port number, and path components of an assertion consumer 438
URL at the destination site. 439

<SAML searchpart>= …TARGET=<Target>…SAMLart=<SAML artifact> … 440
A single target description MUST be included in the <SAML searchpart> component. At 441
least one SAML artifact MUST be included in the SAML <SAML searchpart> component; 442
multiple SAML artifacts MAY be included. If more than one artifact is carried within <SAML443
searchpart>, all the artifacts MUST have the same SourceID. 444

According to HTTP 1.1 [RFC2616] and HTTP 1.0 [RFC1945], the use of status code 302 is 445
recommended to indicate that “the requested resource resides temporarily under a different 446
URI”. The response may also include additional headers and an optional message body as 447
described in those RFCs. 448

Confidentiality and message integrity MUST be maintained in step 2. It is RECOMMENDED 449
that the inter-site transfer URL be exposed over SSL 3.0 or TLS 1.0 (see Section 0). Otherwise, 450
the one or more artifacts returned in step 2 will be available in plain text to an attacker who 451
might then be able to impersonate the assertion subject. 452

Step 3: Accessing the Assertion Consumer Service 453

In step 3, the user’s browser accesses the assertion consumer service, with a SAML artifact 454
representing the user’s authentication information attached to the URL. 455

The HTTP request MUST take the form: 456

GET http://<assertion consumer host name and path>?<SAML searchpart> <HTTP-Version>457
<other HTTP 1.0 or 1.1 request components>458
Where: 459

<assertion consumer host name and path> 460
This provides the host name, port number, and path components of an assertion consumer 461
URL at the destination site. 462

<SAML searchpart>= …TARGET=<Target>…SAMLart=<SAML artifact> … 463
A single target description MUST be included in the <SAML searchpart> component. At 464
least one SAML artifact MUST be included in the <SAML searchpart> component; multiple 465
SAML artifacts MAY be included. If more than one artifact is carried within <SAML466
searchpart>, all the artifacts MUST have the same SourceID. 467

Confidentiality and message integrity MUST be maintained in step 3. It is RECOMMENDED 468
that the assertion consumer URL be exposed over SSL 3.0 or TLS 1.0 (see Section 0). 469

draft-sstc-bindings-model-09 16 10 January 2002

Otherwise, the artifacts transmitted in step 3 will be available in plain text to any attacker who 470
might then be able to impersonate the assertion subject. 471

Steps 4 and 5: Acquiring the Corresponding Assertions 472

In steps 4 and 5, the destination site, in effect, dereferences the one or more SAML artifacts in its 473
posession in order to acquire the SAML authentication assertion that corresponds to each artifact. 474

These steps MUST utilize a SAML protocol binding for a SAML request-response message 475
exchange between the destination and source sites. The destination site functions as a SAML 476
requester and the source site functions as a SAML responder. 477

The destination site MUST send a <samlp:Request> message to the source site, requesting 478
assertions by supplying assertion artifacts in the <samlp:AssertionArtifact> element. 479

If the source site is able to find or construct the requested assertions, it responds with a 480
<samlp:Response> message with the requested assertions. Otherwise, it returns an appropriate 481
error code, as defined within the selected SAML binding. 482

In the case where the source site returns assertions within <samlp:Response>, it MUST return 483
exactly one assertion for each SAML artifact found in the corresponding <samlp:Request> 484
element. The case where fewer or greater number of assertions is returned within the 485
<samlp:Response> element MUST be treated as an error state by the destination site. 486

The source site MUST implement a “one-time request” property for each SAML artifact. Many 487
simple implementations meet this constraint by an action such as deleting the relevant assertion 488
from persistent storage at the source site after one lookup. If a SAML artifact is presented to the 489
source site again, the source site MUST return the same message as it would if it were queried 490
with an unknown artifact. 491

The selected SAML protocol binding MUST provide confidentiality, message integrity and 492
bilateral authentication. The source site MUST implement the SAML SOAP binding with 493
support for confidentiality, message integrity, and bilateral authentication. 494

The source site MUST return an error code if it receives a <samlp:Request> message from an 495
authenticated destination site X containing an artifact issued by the source site to some other 496
destination site Y, where X <>Y. One way to implement this feature is to have source sites 497
maintain a list of artifact and destination site pairs. 498

At least one of the SAML assertions returned to the destination site MUST be an SSO assertion. 499

Authentication statements MAY be distributed across more than one returned assertion. 500

The <saml:ConfirmationMethod> element of each assertion MUST be set to SAMLArtifact 501
(see [SAMLCore]). 502

Based on the information obtained in the assertions retrieved by the destination site, the 503
destination site MAY engage in additional SAML message exchanges with the source site. 504

Step 6: Responding to the User’s Request for a Resource 505

In step 6, the user’s browser is sent an HTTP response that either allows or denies access to the 506
desired resource. 507

draft-sstc-bindings-model-09 17 10 January 2002

No normative form is mandated for the HTTP response. The destination site SHOULD provide 508
some form of helpful error message in the case where access to resources at that site is 509
disallowed. 510

Artifact Format 511

The artifact format includes a mandatory two-byte artifact type code, as follows: 512

SAML_artifact := B64(TypeCode RemainingArtifact)513
TypeCode := Byte1Byte2514

Note: Depending on the level of security desired and associated profile 515
protocol steps, many viable architectures could be developed for the SAML 516
artifact [CoreAssnEx] [ShibMarlena]. The type code structure 517
accommodates variability in the architecture. 518

The notation B64(TypeCode RemainingArtifact) stands for the application of the base-64 519
transformation to the catenation of the TypeCode and RemainingArtifact. This profile defines 520
an artifact type of type code 0x0001, which is REQUIRED (mandatory to implement) for any 521
implementation of the browser/artifact profile. This artifact type is defined as follows: 522

TypeCode := 0x0001523
RemainingArtifact := SourceID AssertionHandle524
SourceID := 20-byte_sequence525
AssertionHandle := 20-byte_sequence526
SourceID is a 20-byte sequence used by the destination site to determine source site identity and 527
location. It is assumed that the destination site will maintain a table of SourceID values as well 528
as the URL (or address) for the corresponding SAML responder. This information is 529
communicated between the source and destination sites out-of-band. On receiving the SAML 530
artifact, the destination site determines if the SourceID belongs to a known source site and 531
obtains the site location before sending a SAML request (as described in Section 0). 532

Any two source sites with a common destination site MUST use distinct SourceID values. 533
Construction of AssertionHandle values is governed by the principle that they SHOULD have 534
no predictable relationship to the contents of the referenced assertion at the source site and it 535
MUST be infeasible to construct or guess the value of a valid, outstanding assertion handle. 536

The following practices are RECOMMENDED for the creation of SAML artifacts at source 537
sites: 538

• Each source site selects a single identification URL. The domain name used within this 539
URL is registered with an appropriate authority and administered by the source site. 540

• The source site constructs the SourceID component of the artifact by taking the SHA-1 541
hash of the identification URL. 542

• The AssertionHandle value is constructed from a cryptographically strong random or 543
pseudorandom number sequence [RFC1750] generated by the source site. The sequence 544
consists of values of at least eight bytes in size. These values should be padded to a total 545
length of 20 bytes. 546

draft-sstc-bindings-model-09 18 10 January 2002

Threat Model and Countermeasures 547

This section utilizes materials from [ShibMarlena] and [Rescorla-Sec]. 548

Stolen Artifact 549

Threat: If an eavesdropper can copy the real user’s SAML artifact, then the eavesdropper could 550
construct a URL with the real user’s SAML artifact and be able to impersonate the user at the 551
destination site. 552

Countermeasure: As indicated in steps 2, 3, 4, and 5, confidentiality MUST be provided 553
whenever an artifact is communicated between a site and the user’s browser. This provides 554
protection against an eavesdropper gaining access to a real user’s SAML artifact. 555

If an eavesdropper defeats the measures used to ensure confidentiality, additional 556
countermeasures are available: 557

• The source and destination sites SHOULD make some reasonable effort to ensure that 558
clock settings at both sites differ by at most a few minutes. Many forms of time 559
synchronization service are available, both over the Internet and from proprietary 560
sources. 561

• SAML assertions communicated in step 5 must MUST include an SSO assertion. 562

• The source site SHOULD track the time difference between when a SAML artifact is 563
generated and placed on a URL line and when a <samlp:Request> message carrying the 564
artifact is received from the destination. A maximum time limit of a few minutes is 565
recommended. Should an assertion be requested by a destination site query beyond this 566
time limit, a SAML error SHOULD be returned by the source site. 567

• It is possible the source site to create SSO assertions either when the corresponding 568
SAML artifact is created or when a <samlp:Request> message carrying the artifact is 569
received from the destination. The validity period of the assertion SHOULD be set 570
appropriately in each case: longer for the former, shorter for the latter. 571

• Values for NotBefore and NotOnOrAfter attributes of SSO assertions SHOULD have 572
the shortest possible validity period consistent with successful communication of the 573
assertion from source to destination site. This is typically on the order of a few minutes. 574
This ensures that a stolen artifact can only be used successfully within a small time 575
window. 576

• The destination site MUST check the validity period of all assertions obtained from the 577
source site and reject expired assertions. A destination site MAY choose to implement a 578
stricter test of validity for SSO assertions, such as requiring the assertion’s 579
IssueInstant or AuthenticationInstant attribute value to be within a few minutes of 580
the time at which the assertion is received at the destination site. 581

• If a received authentication statements includes a <saml:AuthenticationLocality> 582
element with the IP address of the user, the destination site MAY check the browser IP 583
address against the IP address contained in the authentication statement. 584

draft-sstc-bindings-model-09 19 10 January 2002

Attacks on the SAML Protocol Message Exchange 585

Threat: The message exchange in steps 4 and 5 could be attacked in a variety of ways, including 586
artifact or assertion theft, replay, message insertion or modification, and MITM (man-in-the-587
middle attack). 588

Countermeasure: The requirement for the use of a SAML protocol binding with the properties 589
of bilateral authentication, message integrity, and confidentiality defends against these attacks. 590

Malicious Destination Site 591

Threat: Since the destination site obtains artifacts from the user, a malicious site could 592
impersonate the user at some new destination site. The new destination site would obtain 593
assertions from the source site and believe the malicious site to be the user. 594

Countermeasure: The new destination site will need to authenticate itself to the source site so 595
as to obtain the SAML assertions corresponding to the SAML artifacts. There are two cases to 596
consider: 597

1. If the new destination site has no relationship with the source site, it will be unable to 598
authenticate and this step will fail. 599

2. If the new destination site has an existing relationship with the source site, the source site 600
will determine that artifacts are being requested by a site other than the one to which the 601
artifacts were sent. In such a case, the source site MUST not provide the assertions to the 602
new destination site. 603

Forged SAML Artifact 604

Threat: A malicious user could forge a SAML artifact. 605

Countermeasure: Section 0 provides specific recommendations regarding the construction of a 606
SAML artifact such that it is infeasible to guess or construct the value of a current, valid, and 607
outstanding assertion handle. A malicious user could attempt to repeatedly “guess” a valid 608
SAML artifact value (one that corresponds to an existing assertion at a source site), but given the 609
size of the value space, this action would likely require a very large number of failed attempts. A 610
source site SHOULD implement measures to ensure that repeated attempts at querying against 611
non-existent artifacts result in an alarm. 612

Browser State Exposure 613

Threat: The SAML artifact profile involves “downloading” of SAML artifacts to the web 614
browser from a source site. This information is available as part of the web browser state and is 615
usually stored in persistent storage on the user system in a completely unsecured fashion. The 616
threat here is that the artifact may be “reused” at some later point in time. 617

Countermeasure: The “one-use” property of SAML artifacts ensures that they cannot be reused 618
from a browser. Due to the recommended short lifetimes of artifacts and mandatory SSO 619
assertions, it is difficult to steal an artifact and reuse it from some other browser at a later time. 620

draft-sstc-bindings-model-09 20 10 January 2002

Browser/POST Profile of SAML 621

Required Information 622

Identification: 623

http://www.oasis-open.org/security/draft-sstc-bindings-model-0.9/profiles/browser-post 624

Contact information: 625

security-services-comment@lists.oasis-open.org 626

Description: Given below. 627

Updates: None. 628

Preliminaries 629

The browser/POST profile of SAML allows authentication information to be supplied to a 630
destination site without the use of an artifact. The following figure diagrams the interactions 631
between parties in the browser/POST profile. 632

The browser/artifact profile consists of a series of two interactions, the first between a user 633
equipped with a browser and a source site, and the second directly between the user and the 634
destination site. The interaction sequence is shown in the following figure, with the following 635
sections elucidating each step. 636
 637

Step 1

Browser Source Site Destination
Site

Step 2

Step 3

Step 4
 638

Step 1: Accessing the Inter-Site Transfer Service 639

In step 1, the user’s browser accesses the inter-site transfer service, with information about the 640
desired target at the destination site attached to the URL. 641

No normative form is given for step 1. It is RECOMMENDED that the HTTP request take the 642
following form: 643

GET http://<inter-site transfer host name and path>?TARGET=<Target>…<HTTP-Version>644

draft-sstc-bindings-model-09 21 10 January 2002

<other HTTP 1.0 or 1.1 components>645
Where: 646

<inter-site transfer host name and path> 647
This provides the host name, port number, and path components of an inter-site transfer URL 648
at the source site. 649

Target=<Target> 650
This name-value pair occurs in the <searchpart> and is used to convey information about 651
the desired target resource at the destination site. 652

Step 2: Generating and Supplying the Assertion 653

In step 2, the source site generates HTML form data containing an SSO assertion. 654

The HTTP response MUST take the form: 655

<HTTP-Version 200 <Reason Phrase>656
<other HTTP 1.0 or 1.1 components>657
Where: 658

<other HTTP 1.0 or 1.1 components> 659
This MUST include an HTML FORM [Chapter 17, HTML 4.01] with the following FORM 660
body: 661
<Body>662
<FORM Method=”Post” Action=”<assertion consumer host name and path>” …>663
<INPUT TYPE=”Submit” NAME=”button” Value=”Submit”>664
<INPUT TYPE=”hidden” NAME=”SAMLAssertion” Value=”B64(<assertion>)”>665
…666
<INPUT TYPE=”hidden” NAME=”TARGET” Value=”<Target>”>667
</Body>668

<assertion consumer host name and path> 669
This provides the host name, port number, and path components of an assertion consumer 670
URL at the destination site. 671

At least one SAML assertion MUST be included within the FORM body with the control name 672
SAMLAssertion; multiple SAML assertions MAY be included. A single target description 673
MUST be included with the control name TARGET. 674

The notation B64(<assertion>) stands for the result of applying the base-64 transformation to 675
the assertion. 676

Each SAML assertion MUST be digitally signed following the guidelines given in [SAML-677
DSIG-Profile]. 678

Confidentiality and message integrity MUST be maintained for step 2. It is RECOMMENDED 679
that the inter-site transfer URL be exposed over SSL 3.0 or TLS 1.0 (see Section 0). Otherwise, 680
the assertions returned will be available in plain text to any attacker who might then be able to 681
impersonate the assertion subject. 682

Step 3: Posting the Form Containing the Assertion 683

In step 3, the browser submits the form containing the SSO assertion using the following HTTP 684
request. 685

The HTTP request MUST include the following components: 686

POST http://<assertion consumer host name and path>687

draft-sstc-bindings-model-09 22 10 January 2002

<other HTTP 1.0 or 1.1 request components>688
Where: 689

<other HTTP 1.0 or 1.1 request components> 690
This consists of the form data set derived by the browser processing of the form data received 691
in step 2 according to 17.13.3 of [HTML4.01]. At least one SAML assertion MUST be 692
included within the form data set with control name SAMLAssertion; multiple SAML 693
assertions MAY be included. A single target description MUST be included with the control 694
name set to TARGET. 695

At least one of the included SAML assertions MUST be a single-sign on assertion with the 696
additional restriction that the <saml:Target> element MUST also be included within the SSO 697
assertion and its value set to <assertion consumer host name and path>. Note the 698
distinction between the control name TARGET contained within the HTML form (describes a 699
resource at the destination site) and the <saml:Target> element (describes the destination site). 700

The destination site MUST ensure a “single use” policy for SSO assertions communicated by 701
means of this profile. 702

Note: The implication here is that the destination site will need to save state. 703
A simple implementation might maintain a table of pairs, where each pair 704
consists of the assertion ID and the time at which the entry is to be deleted 705
(where this time is based on the SSO assertion lifetime.). The destination site 706
needs to ensure that there are no duplicate entries. Since SSO assertions 707
containing authentication statements are recommended to have short lifetimes 708
in the web browser context, such a table would be of bounded size. 709

Confidentiality and message integrity MUST be maintained for the HTTP request in step 3. It is 710
RECOMMENDED that the assertion consumer URL be exposed over SSL 3.0 or TLS 1.0 (see 711
Section 0). Otherwise, the assertions transmitted in step 3 will be available in plain text to any 712
attacker who might then impersonate the assertion subject. 713

The <saml:ConfirmationMethod> element of each assertion MUST be set to Assertion714
Bearer. 715

Note: Javascript can be used to avoid an additional “submit” step from the 716
user as follows [Anders]: 717

<HTML>718
<BODY Onload=“javascript:document.forms[0].submit ()”>719

<FORM METHOD=“POST” ACTION=“destination-site URL”>720
…721
<INPUT TYPE=“HIDDEN” NAME=“SAMLAssertion”722

VALUE=“assertion in base64 coding”>723
</FORM>724

</BODY>725
</HTML>726

Step 4: Responding to the User’s Request for a Resource 727

In step 4, the user’s browser is sent an HTTP response that either allows or denies access to the 728
desired resource. 729

draft-sstc-bindings-model-09 23 10 January 2002

No normative form is mandated for the HTTP response. The destination site SHOULD provide 730
some form of helpful error message in the case where access to resources at that site is 731
disallowed. 732

Threat Model and Countermeasures 733

This section utilizes materials from [ShibMarlena] and [Rescorla-Sec]. 734

Stolen Assertion 735

Threat: If an eavesdropper can copy the real user’s SAML assertion, then the eavesdropper 736
could construct an appropriate POST body and be able to impersonate the user at the destination 737
site. 738

Countermeasure: As indicated in steps 2 and 3, confidentiality MUST be provided whenever an 739
assertion is communicated between a site and the user’s browser. This provides protection 740
against an eavesdropper obtaining a real user’s SAML assertion. 741

If an eavesdropper defeats the measures used to ensure confidentiality, additional 742
countermeasures are available: 743

• The source and destination sites SHOULD make some reasonable effort to ensure that 744
clock settings at both sites differ by at most a few minutes. Many forms of time 745
synchronization service are available, both over the Internet and from proprietary 746
sources. 747

• SAML assertions communicated in step 3 must MUST include an SSO assertion. 748

• Values for NotBefore and NotOnOrAfter attributes of SSO assertions SHOULD have 749
the shortest possible validity period consistent with successful communication of the 750
assertion from source to destination site. This is typically on the order of a few minutes. 751
This ensures that a stolen artifact can only be used successfully within a small time 752
window. 753

• The destination site MUST check the validity period of all assertions obtained from the 754
source site and reject expired assertions. A destination site MAY choose to implement a 755
stricter test of validity for SSO assertions, such as requiring the assertion’s 756
IssueInstant or AuthenticationInstant attribute value to be within a few minutes of 757
the time at which the assertion is received at the destination site. 758

• If a received authentication statements includes a <saml:AuthenticationLocality> 759
element with the IP address of the user, the destination site MAY check the browser IP 760
address against the IP address contained in the authentication statement. 761

MITM Attack 762

Threat: Since the destination site obtains bearer SAML assertions from the user by means of an 763
HTML form, a malicious site could impersonate the user at some new destination site. The new 764
destination site would believe the malicious site to be the subject of the assertion. 765

draft-sstc-bindings-model-09 24 10 January 2002

Countermeasure: The destination site MUST check the <saml:Target> elements of the SSO 766
assertion to ensure that at least one of their values matches the <assertion consumer host767
name and path>. As the assertion is digitally signed, the <saml:Target> value cannot be 768
altered by the malicious site. 769

Forged Assertion 770

Threat: A malicious user, or the browser user, could forge or alter a SAML assertion. 771

Countermeasure: The browser/POST profile requires SAML assertions to be signed, thus 772
providing both message integrity and authentication. The destination site MUST verify the 773
signature and authenticate the issuer. 774

Browser State Exposure 775

Threat: The browser/POST profile involves uploading of assertions from the web browser to a 776
source site. This information is available as part of the web browser state and is usually stored in 777
persistent storage on the user system in a completely unsecured fashion. The threat here is that 778
the assertion may be “reused” at some later point in time. 779

Countermeasure: Assertions communicated using this profile must always include an SSO 780
assertion. SSO assertions are expected to have short lifetimes and destination sites are expected 781
to ensure that assertions are not re-submitted. 782

SOAP Profile of SAML 783

See Section 0 for the definition of the SOAP binding for SAML, as opposed to the SOAP profile 784
of SAML. 785

The SOAP profile of SAML is a realization of Scenarios 3-1 and 3-3 of the SAML requirements 786
document [SAMLReqs] in the context of SOAP. It is based on a single interaction between a 787
sender and a receiver, as follows: 788

1. The sender obtains one or more assertions. 789

2. The sender attaches the assertions to a SOAP message. 790

3. The sender sends the SOAP message with the attached assertions to the receiver. The 791
SOAP message may be sent over any protocol for which a SOAP protocol binding is 792
available [SOAP1.1]. 793

4. The receiver attempts to process the attached assertions. If it cannot process them, it 794
returns an error message. If it can process them, it does so and also processes the rest of 795
the SOAP message in an application-dependent way. 796

Required Information 797

Identification: 798

http://www.oasis-open.org/security/draft-sstc-bindings-model-0.9/profiles/SOAP 799

Contact information: 800

draft-sstc-bindings-model-09 25 10 January 2002

security-services-comment@lists.oasis-open.org 801

Description: Given below. 802

Updates: None. 803

SOAP Headers 804

SOAP provides a flexible header mechanism, which OPTIONAL to use for extending SOAP 805
payloads with additional information. Rules for SOAP headers are given in [SOAP1.1] §4.2. 806

SAML assertions MUST be contained within the SOAP <SOAP-ENV:Header> element, which is 807
in turn contained within the <SOAP-ENV:Envelope> element. Two standard SOAP attributes are 808
available for use with header elements: actor and mustUnderstand. Use of the actor attribute 809
is application dependent and no normative use is specified herein. 810

The mustUnderstand attribute can be used to indicate whether a header entry is mandatory or 811
optional for the recipient to process. SAML assertions MUST have the mustUnderstand 812
attribute set to 1; this ensures that a SOAP processor to which the SAML header is directed must 813
process the SAML assertions as explained in [SOAP1.1] §4.2.3.814

SAML Errors 815

If the receiver is able to access the SAML assertions contained in the SOAP header, but is unable 816
to process them, the receiver SHOULD return a SOAP message with a <SOAP-ENV:Fault> 817
element as the message body and with samlp:failure as the <SOAP-ENV:Faultcode> element 818
value. Reasons why the receiver may be unable to process SAML assertions, include, but are not 819
limited to: 820

1. The assertion contains a <saml:Condition> element that the receiver does not understand. 821

2. The signature on the assertion is invalid. 822

3. The receiver does not accept assertions from the issuer of the assertion in question.823

4. The receiver does not understand the extension schema used in the assertion.824

It is RECOMMENDED that the <SOAP-ENV:Faultstring> element contain an informative 825
message. This specification does not specify any normative text. Sending parties MUST NOT 826
rely on specific contents in the <SOAP-ENV:Faultstring> element. 827

Following is an example of providing fault information:828

<SOAP-ENV:Fault>829
<SOAP-ENV:Faultcode>samlp:failure</SOAP-ENV:Faultcode>830
<SOAP-ENV:Faultstring>SAML Version Error</SOAP-ENV:Faultstring>831

</SOAP-ENV:Fault>832

Security Considerations 833

Every assertion MUST be signed by the issuer following the guidelines in [SAML-DSIG-834
Profile]. 835

draft-sstc-bindings-model-09 26 10 January 2002

The sender and receiver MUST ensure the data integrity of SOAP messages and contained 836
assertions. A variety of different techniques are available for providing data integrity, including, 837
for example, use of TLS/SSL, digital signatures over the SOAP message, and IPsec. 838

When a receiver processes a SOAP message containing SAML assertions, it MUST make an 839
explicit determination of the relationship between subject of the assertions and the sender. 840
Merely obtaining a SOAP message containing assertions carries no implication about the 841
sender’s right to possess and communicate the included assertions. A variety of means are 842
available for making such a determination, including, for example, explicit policies at the 843
receiver, authentication of sender, and use of digital signature. 844

Two message formats for ensuring the data integrity of the attachment of assertions to a SOAP 845
message, HolderOfKey and SenderVouches, are described below. The HolderOfKey format has 846
the additional property that it also implies a specific relationship between the sender and subject 847
of the assertions included within the SOAP message. Senders and receivers implementing the 848
SOAP Profile of SAML MUST implement both formats. 849

HolderOfKey Format 850

The following sections describe the HolderOfKey format for ensuring the data integrity of 851
assertions attached to a SOAP message. Both make use of XML Signature [XMLSig]. 852

Sender 853

In this case, the sender and the subject are the same entity. The sender obtains one or more 854
assertions from one or more authorities. Each assertion MUST include the following 855
<saml:SubjectConfirmation> element: 856

<saml:SubjectConfirmation>857
<saml:ConfirmationMethod>HolderOfKey</saml:ConfirmationMethod>858
<ds:KeyInfo>…</ds:KeyInfo>859

</saml:SubjectConfirmation>860
The <saml:SubjectConfirmation> element carries information about the sender’s key within 861
the <ds:KeyInfo> element. The <ds:KeyInfo> element provides varied ways for describing 862
information about the sender’s public or secret key. 863

In addition to the assertions, the sender MUST include a <ds:Signature> element within the 864
SOAP <SOAP-ENV:Header>. The <ds:Signature> element MUST apply to the SAML assertion 865
elements in the <SOAP-ENV:Header> element, and all the relevant portions of the <SOAP-866
ENV:Body> element, as required by the application. Specific applications might require that the 867
signature also apply to additional elements in SOAP header. 868

 Receiver 869

The receiver MUST verify that each assertion carries a <saml:SubjectConfirmation> element 870
of the following form: 871

<saml:SubjectConfirmation>872
<saml:ConfirmationMethod>HolderOfKey</saml:ConfirmationMethod>873
<ds:KeyInfo>…</ds:KeyInfo>874

</saml:SubjectConfirmation>875

draft-sstc-bindings-model-09 27 10 January 2002

The receiving party MUST check the validity of the signature found in a <SOAP-876
ENV:Envelope>/<ds:Signature> sub-element of the SOAP message. The receiving party 877
SHOULD use the sender’s public or information about a secret key carried within the 878
<saml:SubjectConfirmation>/<ds:KeyInfo> element carried within each assertion. 879

Note: The <ds:KeyInfo> element is used only for checking integrity of 880
assertion attachment (message integrity). Therefore, there is no requirement 881
that the receiver validate the key or certificate. This suggests that, if needed, a 882
sender can generate a public/private key pair and utilize it for this purpose. 883

Once the above steps have been completed, the receiver can further process the assertions and 884
SOAP message contents with the assurance that portions of the SOAP message that fall within 885
the scope of the digital signature have been constructed by the sender and have not been altered 886
by an intermediary. Further, the sender has provided proof of possession of the corresponding 887
private-key (or secret-key) component of the information included in the 888
<saml:SubjectConfirmation>/<ds:KeyInfo> 889

element included in each assertion. If the receiver believes the assertions to be valid, then the 890
information contained in the assertions MAY be considered to be describing the sender. 891

Example 892

The following example illustrates the HolderOfKey message format: 893

<?xml:version=“1.0” encoding=“UTF-8”?>894
<SOAP-ENV:Envelope xmlns:SOAP-895
ENV=“http://schemas.xmlsoap.org/soap/envelope/”896

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”897
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>898
<SOAP-ENV:Header>899

<saml:AssertionList mustUnderstand=“1”900
AssertionID=“192.168.2.175.1005169137985”901
IssueInstant=“2001-11-07T21:38:57Z”902
Issuer=“M and M Consulting”903
MajorVersion=“1”904
MinorVersion=“0”905
xmlns:saml=“…”906
xmlns:samlp=“…”>907
<saml:Conditions908

NotBefore=“2001-11-07T21:33:57Z”909
NotOnOrAfter=“2001-11-07T21:48:57Z”>910
<saml:AbstractCondition911

xsi:type=“AudienceRestrictionConditionType”>912
<saml:Audience>913
http://www.example.com/research_finance_agreement.xml914
</saml:Audience>915

</saml:AbstractCondition>916
</saml:Conditions>917
<saml:AuthenticationStatement918

AuthenticationInstant=“2001-11-07T21:38:57Z”919
AuthenticationMethod=“Password”>920
<saml:Subject>921

<saml:NameIdentifier Name=“goodguy”922
SecurityDomain=“www.example.com />923

<saml:SubjectConfirmation>HolderOfKey924
</saml:SubjectConfirmation>925

draft-sstc-bindings-model-09 28 10 January 2002

<ds:KeyInfo>926
<ds:KeyValue>…</ds:KeyValue>927
<ds:X509Data>…</ds:X509Data>928

</ds:KeyInfo>929
</saml:Subject>930
<saml:AuthenticationLocality931

DNSAddress=“some_computer”932
IPAddress=“111.111.111.111” />933

</saml:AuthenticationStatement>934
<ds:Signature>935

<ds:SignedInfo>936
<ds:CanonicalizationMethod937

Algorithm=“http://www.w3.org/TR/2000/09/WD-xml-c14n-20000119” />938
<ds:SignatureMethod Algorithm=939

“http://www.w3.org/2000/09/xmldsig#dsa-sha1” />940
<ds:Reference URI=“”>941

<ds:Transforms>942
<ds:Transform943

Algorithm=“http://www.w3.org/2000/09/xmldsig#enveloped-signature” />944
</ds:Transforms>945
<ds:DigestMethod946

Algorithm= “http://www.w3.org/2000/09/xmldsig#dsa-sha1” />947
<ds:DigestValue>GSUvQSPfYkAC9wpHbLSfPEjMllo=948
</ds:DigestValue>949

</ds:Reference>950
</ds:SignedInfo>951
<ds:SignatureValue>952
iLJj64yusw7h4FTbiyKRvAQoALlmeCnKxhKqStrFahVXIZUXacmDJw==953
</ds:SignatureValue>954
<ds:KeyInfo>955

<ds:KeyValue>…</ds:KeyValue>956
<ds:X509Data>…</ds:X509Data>957

</ds:KeyInfo>958
</ds:Signature>959

</saml:AssertionList>960
<ds:Signature>961

<ds:SignedInfo>962
<ds:CanonicalizationMethod>963

Algorithm= “http://www.w3.org/TR/2000/09/WD-xml-c14n-20000119” />964
<ds:SignatureMethod> Algorithm=965
“http://www.w3.org/2000/09/xmldsig#dsa-sha1” />966

<ds:Reference URI=“”>967
<ds:Transforms>968

<ds:Transform969
Algorithm=“http://www.w3.org/2000/09/xmldsig#enveloped-signature” />970

</ds:Transforms>971
<ds:DigestMethod972

Algorithm=“http://www.w3.org/2000/09/xmldsig#dsa-sha1” />973
<ds:DigestValue>UYRsLhRffJagF7d+RfNt8CPKhbM=974
</ds:DigestValue>975

</ds:Reference>976
</ds:SignedInfo>977
<ds:SignatureValue>978
HJJWbvqW9E84vJVQkjjLLA6nNvBX7mY00TZhwBdFNDElgscSXZ5Ekw==979
</ds:SignatureValue>980

</ds:Signature>981
</SOAP-ENV:Header>982

</SOAP-ENV:Body>983
<ReportRequest>984
<TickerSymbol>SUNW</TickerSymbol>985
</ReportRequest>986

</SOAP-ENV:Body>987
</SOAP-ENV:Envelope>988

draft-sstc-bindings-model-09 29 10 January 2002

SenderVouches Format 989

The following sections describe the SenderVouches format for ensuring the data integrity of 990
assertions attached to a SOAP message. 991

Sender 992

In this case, the sender and subject MAY be distinct entities. The sender obtains one or more 993
assertions from one or more authorities and includes them in a SOAP message. Each assertion 994
MUST include the following <saml:SubjectConfirmation> element: 995

<saml:SubjectConfirmation>996
<saml:ConfirmationMethod>SenderVouches</saml:ConfirmationMethod>997

</saml:SubjectConfirmation>998
In addition to the assertions, the sender MUST include a <ds:Signature> element within the 999
SOAP <SOAP-ENV:Header>. The <ds:Signature> element MUST apply to the SAML assertion 1000
elements in the <SOAP-ENV:Header> element, and all the relevant portions of the <SOAP-1001
ENV:Body> element, as required by the application. Specific applications might require that the 1002
signature also apply to additional elements in SOAP header. 1003

Following the XML Signature specification, the sender MAY include a <ds:KeyInfo> element 1004
within the <ds:Signature> element. The <ds:KeyInfo> element provides varied ways for 1005
describing information about the sender’s public or secret key. If is omitted, the receiver is 1006
expected to identify the key based on context. 1007

 Receiver 1008

The receiver MUST verify that each assertion carries a <saml:SubjectConfirmation> element 1009
of the following form: 1010

<saml:SubjectConfirmation>1011
<saml:ConfirmationMethod>SenderVouches</saml:ConfirmationMethod>1012

</saml:SubjectConfirmation>1013
The receiving party MUST check the validity of the signature found in the <SOAP-1014
ENV:Envelope>/<ds:Signature> element. Information about the sender’s public or secret key 1015
either is found in the <SOAP-ENV:Envelope>/<ds:Signature>/<ds:KeyInfo> element carried 1016
within the SOAP envelope or is based on application context. 1017

Once the above steps have been completed, the receiver can further process the assertions and 1018
SOAP message contents with the assurance that portions of the SOAP message that fall within 1019
the scope of the digital signature have been constructed by the sender and have not been altered 1020
by an intermediary. 1021

In contrast to the HolderOfKey case, information about the sender either is provided by the 1022
contents of the <ds:KeyInfo> element found within the signature or is based on application 1023
context. 1024

Example 1025

The following example illustrates the SenderVouches message format: 1026

draft-sstc-bindings-model-09 30 10 January 2002

<SOAP-ENV:Envelope xmlns:SOAP-1027
ENV=”http://schema.xmlsoap.org/soap/envelope/”>1028

<SOAP-ENV:Header xmlns:saml=”…”1029
<saml:Assertion mustUnderstand=”1”>…</saml:Assertion>1030
<saml:Assertion mustUnderstand=”1”>…</saml:Assertion>1031
<ds:Signature>…1032

<ds:KeyInfo>…</ds:KeyInfo>1033
</ds:Signature>1034

</SOAP-ENV:Header>1035
<SOAP-ENV:Body>1036

<message_payload/>1037
</SOAP-ENV:Body>1038

</SOAP-ENV:Envelope>{PRIVATE "TYPE=PICT;ALT=Figure 3: SOAP document with1039
inserted assertions"}1040

Additional Security Considerations 1041

The model described in this section does not take into account (1) replay attacks, (2) 1042
authentication of sender by receiver, (3) authentication of receiver by sender, and (4) 1043
confidentiality. These must be addressed by means other than those described in this 1044
specification. 1045

Use of SSL 3.0 or TLS 1.0 1046

In any SAML use of SSL 3.0 or TLS 1.0 [RFC2246], servers MUST authenticate to clients 1047
using a X.509.v3 certificate. The client MUST establish server identity based on contents of the 1048
certificate (typically through examination of the certificate subject DN field). 1049

SAML SOAP Binding 1050

TLS-capable implementations MUST implement the 1051
TLS_RSA_WITH_3DES_EDE_CBC_SHA ciphersuite and MAY implement the 1052
TLS_RSA_AES_128_CBC_SHA ciphersuite [AES]. 1053

Web Browser Profiles for SAML 1054

SSL-capable implementations of the browser/artifact profile or browser/POST profile of SAML 1055
MUST implement the SSL_RSA_WITH_3DES_EDE_CBC_SHA ciphersuite. 1056

TLS-capable implementations MUST implement the 1057
TLS_RSA_WITH_3DES_EDE_CBC_SHA ciphersuite. 1058

References 1059

[Anders] A suggestion on how to implement SAML browser bindings without using 1060
“Artifacts”, http://www.x-obi.com/OBI400/andersr-browser-artifact.ppt. 1061

[AuthXML] AuthXML: A Specification for Authentication Information in XML, 1062
http://www.oasis-open.org/committees/security/docs/draft-authxml-1063
v2.pdf. 1064

draft-sstc-bindings-model-09 31 10 January 2002

[MSURL] Microsoft technical support article, 1065
http://support.microsoft.com/support/kb/articles/Q208/4/27.ASP. 1066

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 1067
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 1068

[RFC2617] HTTP Authentication: Basic and Digest Access Authentication, 1069
http://www.ietf.org/rfc/rfc2617.txt, IETF RFC 2617. 1070

[S2ML] S2ML: Security Services Markup Language, Version 0.8a, January 8, 1071
2001. http://www.oasis-open.org/committees/security/docs/draft-s2ml-1072
v08a.pdf. 1073

[SAMLCore] Hallam-Baker, P. et al., Assertions and Protocol for the OASIS Security 1074
Assertion Markup Language (SAML), http://www.oasis-1075
open.org/committees/security/docs/draft-sstc-core-21.pdf, OASIS, 1076
December 2001. 1077

[SAMLGloss] J. Hodges et al., Glossary for the OASIS Security Assertion Markup 1078
Language (SAML), http://www.oasis-1079
open.org/committees/security/docs/draft-sstc-glossary-02.pdf, OASIS, 1080
December 2001. 1081

[SAMLSec] J. Hodges et al., Security Considerations for the OASIS Security Assertion 1082
Markup Language (SAML), http://www.oasis-1083
open.org/committees/security/docs/draft-sec-consider-02.pdf, OASIS, 1084
December 2001. 1085

[SAMLReqs] D. Platt et al., SAML Requirements and Use Cases, OASIS, December 1086
2001. 1087

[Shib] Shiboleth Overview and Requirements 1088
http://middleware.internet2.edu/shibboleth/docs/draft-internet2-1089
shibboleth-requirements-1090
00.htmlhttp://middleware.internet2.edu/shibboleth/docs/draft-internet2-1091
shibboleth-requirements-00.html 1092

[ShibMarlena] Marlena Erdos, Shibboleth Architecture DRAFT v1.1, 1093
http://middleware.internet2.edu/shibboleth/docs/draft-erdos-shibboleth-1094
architecturel-00.pdf 1095

[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1, 1096
http://www.ietf.org/rfc/rfc2616.txt. 1097
 1098

[RFC1738] Uniform Resource Locators (URL), http://www.ietf.org/rfc/rfc1738.txt 1099

[RFC1750] Randomness Recommendations for Security. 1100
http://www.ietf.org/rfc/rfc1750.txt 1101

[RFC1945] Hypertext Transfer Protocol -- HTTP/1.0, 1102
http://www.ietf.org/rfc/rfc1945.txt. 1103

[RFC2246] The TLS Protocol Version 1.0, http://www.ietf.org/rfcs/rfc2246.html. 1104

[RFC2774] An HTTP Extension Framework, http://www.ietf.org/rfc/rfc2774.txt. 1105

draft-sstc-bindings-model-09 32 10 January 2002

[SOAP1.1] D. Box et al., Simple Object Access Protocol (SOAP) 1.1, 1106
http://www.w3.org/TR/SOAP, World Wide Web Consortium Note, May 1107
2000. 1108

[CoreAssnEx] Core Assertions Architecture, Examples and Explanations, 1109
http://www.oasis-open.org/committees/security/docs/draft-sstc-core-phill-1110
07.pdf. 1111

[XMLSig] D. Eastlake et al., XML-Signature Syntax and Processing, 1112
http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium. 1113

[WEBSSO] RL “Bob” Morgan, Interactions between Shibboleth and local-site web 1114
sign-on services, http://middleware.internet2.edu/shibboleth/docs/draft-1115
morgan-shibboleth-websso-00.txt 1116

[SESSION] RL “Bob” Morgan, Support of target web server sessions in Shibboleth, 1117
http://middleware.internet2.edu/shibboleth/docs/draft-morgan-shibboleth-1118
session-00.txt 1119

[SSLv3] The SSL Protocol Version 3.0, 1120
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt 1121

[Rescorla-Sec] E. Rescorla et al., Guidelines for Writing RFC Text on Security 1122
Considerations, http://www.ietf.org/internet-drafts/draft-rescorla-sec-1123
cons-03.txt. 1124

URL Size Restriction (Non-Normative) 1125

This section describes the URL size restrictions that have been documented for widely used 1126
commercial products. 1127

A Microsoft technical support article [MSURL] provides the following information: 1128

The information in this article applies to: 1129

Microsoft Internet Explorer (Programming) versions 4.0, 4.01, 4.01 SP1, 4.01 1130
SP2, 5, 5.01, 5.5 1131

SUMMARY 1132

Internet Explorer has a maximum uniform resource locator (URL) length of 1133
2,083 characters, with a maximum path length of 2,048 characters. This limit 1134
applies to both POST and GET request URLs. 1135

If you are using the GET method, you are limited to a maximum of 2,048 1136
characters (minus the number of characters in the actual path, of course). 1137

POST, however, is not limited by the size of the URL for submitting 1138
name/value pairs, because they are transferred in the header and not the URL. 1139

RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, does not specify any 1140
requirement for URL length. 1141

REFERENCES 1142

draft-sstc-bindings-model-09 33 10 January 2002

Further breakdown of the components can be found in the Wininet header file. 1143
Hypertext Transfer Protocol -- HTTP/1.1 General Syntax, section 3.2.1 1144

Additional query words: POST GET URL length 1145

Keywords : kbIE kbIE400 kbie401 kbGrpDSInet kbie500 kbDSupport kbie501 1146
kbie550 kbieFAQ 1147

Issue type : kbinfo 1148

Technology : 1149

An article about xxx[elm1] provides the following information: 1150

Issue: 19971110-3 Product: Enterprise Server 1151

Created: 11/10/1997 Version: 2.01 1152

Last Updated: 08/10/1998 OS: AIX, Irix, Solaris 1153

Does this article answer your question? 1154

Please let us know! 1155

Question: 1156

How can I determine the maximum URL length that the Enterprise server will 1157
accept? Is this configurable and, if so, how? 1158

Answer: 1159

Any single line in the headers has a limit of 4096 chars; it is not configurable. 1160

Alternative SAML Artifact Format 1161

Required Information 1162

Identification: 1163

http://www.oasis-open.org/security/draft-sstc-bindings-model-0.9/profiles/artifact-02 1164

Contact information: 1165

security-services-comment@lists.oasis-open.org 1166

Description: Given below. 1167

Updates: None. 1168

Format Details 1169

An alternative artifact format is described here: 1170

TypeCode := 0x00021171
RemainingArtifact := AssertionHandle SourceLocation1172
AssertionHandle := 20-byte_sequence1173
SourceLocation := URI1174

draft-sstc-bindings-model-09 34 10 January 2002

The SourceLocation URI is the address of the SAML responder associated with the source site. 1175
The assertionHandle is as described in Section 0, and governed by the same requirements. 1176
The destination site MUST process the artifact in a manner identical to that described in Section 1177
0, with the exception that the location of the SAML responder at the source site MAY be 1178
obtained directly from the artifact, rather than by look-up, based on sourceID. 1179

Note: the destination site MUST confirm that assertions were issued by an acceptable issuer, not 1180
relying merely on the fact that they were returned in response to a samlp:request. 1181

 1182

 1183

draft-sstc-bindings-model-09 35 10 January 2002

Appendix A. Notices 1184

OASIS takes no position regarding the validity or scope of any intellectual property or other 1185
rights that might be claimed to pertain to the implementation or use of the technology described 1186
in this document or the extent to which any license under such rights might or might not be 1187
available; neither does it represent that it has made any effort to identify any such rights. 1188
Information on OASIS's procedures with respect to rights in OASIS specifications can be found 1189
at the OASIS website. Copies of claims of rights made available for publication and any 1190
assurances of licenses to be made available, or the result of an attempt made to obtain a general 1191
license or permission for the use of such proprietary rights by implementors or users of this 1192
specification, can be obtained from the OASIS Executive Director. 1193

OASIS invites any interested party to bring to its attention any copyrights, patents or patent 1194
applications, or other proprietary rights which may cover technology that may be required to 1195
implement this specification. Please address the information to the OASIS Executive Director. 1196

Copyright © The Organization for the Advancement of Structured Information Standards 1197
[OASIS] 2001. All Rights Reserved. 1198

This document and translations of it may be copied and furnished to others, and derivative works 1199
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 1200
published and distributed, in whole or in part, without restriction of any kind, provided that the 1201
above copyright notice and this paragraph are included on all such copies and derivative works. 1202
However, this document itself may not be modified in any way, such as by removing the 1203
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 1204
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 1205
Property Rights document must be followed, or as required to translate it into languages other 1206
than English. 1207

The limited permissions granted above are perpetual and will not be revoked by OASIS or its 1208
successors or assigns. 1209

This document and the information contained herein is provided on an “AS IS” basis and OASIS 1210
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 1211
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN 1212
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 1213
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 1214

Page: 33
[elm1]What exactly does this information apply to? Can we cite a URL for it?

	Introduction
	Protocol Binding and Profile Concepts
	Notation

	Specification of Additional Protocol Bindings and Profiles
	Guidelines for Specifying Protocol Bindings and Profiles
	Process Framework for Describing and Registering Protocol Bindings and Profiles

	Protocol Bindings
	SOAP Binding for SAML
	Required Information
	Protocol-Independent Aspects of the SAML SOAP Binding
	Basic Operation
	SOAP Headers
	Authentication
	Message Integrity
	Confidentiality

	Use of SOAP over HTTP
	HTTP Headers
	Authentication
	Message Integrity
	Message Confidentiality
	Security Considerations
	Error Reporting
	Example SAML Message Exchange Using SOAP over HTTP

	Profiles
	Web Browser SSO Profiles for SAML
	Browser/Artifact Profile of SAML
	Required Information
	Preliminaries
	Step 1: Accessing the Inter-Site Transfer Service
	Step 2: Redirecting to the Destination Site
	Step 3: Accessing the Assertion Consumer Service
	Steps 4 and 5: Acquiring the Corresponding Assertions
	Step 6: Responding to the User’s Request for a Resource
	Artifact Format
	Threat Model and Countermeasures
	Stolen Artifact
	Attacks on the SAML Protocol Message Exchange
	Malicious Destination Site
	Forged SAML Artifact
	Browser State Exposure

	Browser/POST Profile of SAML
	Required Information
	Preliminaries
	Step 1: Accessing the Inter-Site Transfer Service
	Step 2: Generating and Supplying the Assertion
	Step 3: Posting the Form Containing the Assertion
	Step 4: Responding to the User’s Request for a Resource
	Threat Model and Countermeasures
	Stolen Assertion
	MITM Attack
	Forged Assertion
	Browser State Exposure

	SOAP Profile of SAML
	Required Information
	SOAP Headers
	SAML Errors
	Security Considerations
	HolderOfKey Format
	Sender
	Receiver
	Example

	SenderVouches Format
	Sender
	Receiver
	Example

	Additional Security Considerations

	Use of SSL 3.0 or TLS 1.0
	SAML SOAP Binding
	Web Browser Profiles for SAML

	References
	URL Size Restriction (Non-Normative)
	Alternative SAML Artifact Format
	Required Information
	Format Details

