
[image: image1.png]
Universal Business Language (UBL)
Position Paper: Library Content Methodology

Authors:

Tim McGrath (tmcgrath@portcomm.com.au)

Bob Glushko (glushko@sims.berkeley.edu)

Date: June 26, 2002

Filename: position-mcgrath-methodology-01.doc

Table of Contents
31
Summary

42
Problem Description

42.1
What we mean by a methodology

53
Options

53.1
Option 1: Continue with informal methodology

63.2
Option 2: Adopt an existing formal methodology

73.3
Option 3: Adopt a Document Engineering approach

73.3.1
Document-Centric Analysis

73.3.2
Data-Centric Analysis

83.3.3
Document Engineering

83.3.4
Classifying Components

93.3.5
Analysis of Document Components

103.3.6
Identifying Content and Structural Components

113.3.7
Normalizing the data model

123.3.8
Applying Analysis to UBL

123.3.8.1
Where are the Core Components?

123.3.8.2
Aligning the terminology

133.3.8.3
Data Types

143.3.9
Document Design

143.3.10
Context

153.3.10.1
Applying Context to UBL

163.3.11
Using Patterns

163.3.11.1
Patterns and UBL

163.3.12
Assembling Document Definitions

173.3.12.1
Document Assembly and UBL

173.3.13
Document Schema Encoding

173.3.13.1
Document Encoding and UBL

184
Recommendation

184.1.1
Recommended UBL Meta-model

184.1.2
Recommended UBL Notation

194.1.3
Recommended UBL Processes

21Appendix A. Notices

1 Summary

This document describes a proposal for formalizing a methodology for identifying and defining library content.

The UBL Library is a collection of business information entities expressed in a logical model. These are then transformed using the UBL Naming and Design rules into XML Schema syntax.

The UBL model helps analysts, modelers, domain experts, and others better understand the Library. Any such business data model is developed using some form of methodology. By methodology, we mean the processes, notations and possible software tools used to populate a meta-model which in turn defines a data model.

This document describes three options available to UBL and recommends the adoption of a formal and pragmatic approach to library content development based on analysis and design techniques we call “Document Engineering".

2 Problem Description

If it is to become an international standard for electronic commerce, UBL needs to achieve a critical mass of adoption. To promote rapid and widespread adoption, UBL must accelerate its own Library development work and allow its workload to be distributed to sub-groups and industry verticals. This requires a formalization of the approach UBL takes to identifying and describing the content of its library. We need a content development process, a notation and a meta-model documented in such a way that they can be used by both UBL members and the broader community. This will enable a broader range of interested parties to understand, refine and extend the UBL Library and to develop models for contextualized situations.

Therefore, the UBL requirements are for a formally defined methodology. In addition, because of UBL’s objective to synthesize a range of established vocabularies in both the XML and EDI worlds, this approach also includes explicit steps to identify and reuse design patterns and other artifacts of prior modeling efforts.

2.1 What we mean by a methodology

By methodology, we mean the processes, notations and possible software tools used to populate a meta-model which in turn defines the artifacts we call our data model. For this reason the Unified Modeling Language™ (UML)
 is not a methodology – it defines no processes. However, the UML can be used for its notation and meta-model as part of the methodologies that do define processes, such as the UN/CEFACT Modeling Methodology (UMM)
.

Methodologies exist whether we define them explicitly or not. An explicit, formal methodology establishes a consistent meta-model – how the information about the model is to be presented. Some formal methodologies may be strict about their process and notation whilst others are best described as providing a do-it-yourself tool-kit approach using optional sets of processes, notation and tools. Each approach has its values.

The ‘strict processes’ methodology yields consistent and interchangeable models produced from independent sources. These may be useful in situations where there is a requirement for exchangeable business process models.

The tool-kit approach is more concerned with pragmatic tools for specific uses, for example where a common model is being developed for use by an entire community. It is our proposal that this is the situation of UBL – developing a single universal model of a business language.

3 Options

The options available to us depend on how formal we wish our methodology to be and what established methodologies exist that can be directly and simply applied to the work of developing UBL Library Content.

3.1 Option 1: Continue with informal methodology

UBL currently uses a fairly informal and ad-hoc set of methodologies. At the initial meetings of the UBL library content team, a process was developed to review each component in the XCBL library for internal consistency and for compatibility with the ebXML Core Component Technical Specification. Since the XCBL development process included a similar step with respect to existing XML and EDI vocabularies, we believe that this ensured a good deal of semantic regularity and completeness. It also made XCBL a reasonable base from which we could then incorporate additional semantics from other vocabularies.
In summary the processes undertaken have been…

1. Analyze the xCBL Order constructs to identify the Basic Information Entities (components):

· Basic BIE (content component)

· Aggregate BIE (instance of a structural component)

1. Establish context and semantics:

· Naming, context and definitions

2. Establish cardinality/optionality

3. Identify missing BIEs

4. Develop a Library of re-usable types (structural components)

5. Assemble new document
Whilst this approach was pragmatic and achieved early results quickly, it suffers from a few shortcomings:

· We rely heavily on one existing vocabulary (xCBL), itself limited in scope to supply chain functions.

· We rely heavily on interpretation of a third party specification, the Core Component Technical Specification. This document is still under development. Whilst this may mean that the CCTS and the approach needed by UBL can be closely aligned it raises the problem of potential divergence and delays caused by revisions to the CCTS.

· The CCTS is primarily used for its meta-model and naming rules. It does not assist in the analysis or design of the Core Components or Business Information Entities themselves (see 3.2 below). Therefore, there is potential for disconnection between the model and its naming rules. For this reason the ISO 11179 recommendation behind these rules has been the ongoing subject of differing interpretations. This is exacerbated by the inconsistencies within the various sections of ISO 11179 itself.
· The CCTS meta-model is focused on a syntax independent model and so is not intended to drive XML instantiations such as the UBL XML Schema Naming and Design Rules.

3.2 Option 2: Adopt an existing formal methodology

Because of the close ties between the UBL and the ebXML Core Components work managed by UN/CEFACT, it has been proposed that the UN/CEFACT Modeling Methodology (UMM) be applied to UBL. However, there are several difficulties with this idea:

1. The UMM does not cover the analysis of document components in sufficient detail.

Business information objects contained in the Lexicon are used to discover candidates or classes and attributes in the conceptual class diagram. … A business information entity captures information about a real world (business) concept, and relationships between that concept and other business concepts. An information entity can be either an individual piece of business information, or a natural “go-together” family of business information pieces. An information entity may contain another information entity in combination with one or more information entities. If, in the process of creating the conceptual class diagram, required business information entities are not as yet contained in the Lexicon, they become candidates for being added to the Lexicon. Methodologies developed for admitting Lexicon additions, such as extension rules, context analysis and naming conventions will be followed in extending the Lexicon.

- UMM 4.1.7 Conceptual Class Modelling
2. The UMM does not describe the design of document components at all.

The fundamental principle for the design workflow is to describe the business collaborations between networked components, the information model that describes the domain and the business documents, and the application of business service interaction design patterns.

- UMM 5.1.2 Design Methodology

3. The UMM is focused on business process modeling.

The primary scope of UMM is the Business Operations View (BOV) and not the Functional Service View (FSV) as defined in ISO/IEC IS 14662. The BOV is defined as “a perspective of business transactions limited to those aspects regarding the making of business decisions and commitments among organizations”, while the FSV is focused on implementation specific, technological aspects of Open-edi. As such, UMM provides a procedure for specifying (modeling), in a technology-neutral, implementation-independent manner business processes involving information exchange.

- UMM 1.1.1 Scope

4. The UMM is still a work in progress and has no comparable reference project relevant to the UBL Library Development process.
5. The Core Component Technical Specification does not cover the analysis of document components in sufficient detail.
5. Compile a list of the pieces of information required for the business process.

If starting from a model (UN/CEFACT recommends UMM models of business processes), identify the objects (Aggregate Business Information Entities) that are needed.

If not starting from a model, collect the pieces of information into object-like groups (Aggregate Business Information Entities). It is important to recognize and avoid pieces of information that are purely used for legacy system or syntax purposes.

For each Aggregate Business Information Entity, capture its semantic definition, any Business Terms by which it is commonly known, and other information identified in the previous steps.

- CCTS v1.8 5.2.1 Core Component Discovery
3.3 Option 3: Adopt a Document Engineering approach

With a few notable exceptions such as Maler and Carlson there has been remarkably little publication of practical techniques for developing XML vocabularies. There may be some explanation for this. The process of defining vocabularies for e-Business documents requires two different disciplines or methods of analysis that until now has seen little intersection.

3.3.1 Document-Centric Analysis

Because of the essential role of documents in business, it is natural that document analysis will form a major part of any methodology for e-business documents. Document analysis techniques have been developed by publishing experts. These emphasize the study of published documents as artifacts that are perceived as a rendition – a combination of information and format.

Various markup languages have been developed that make it possible to separate document content from the format. This gave rise to the insight that markup could be used to facilitate functions other than formatting, such as classification, retrieval, and reuse.
Document analysis is often conducted with the goal of abstracting a logical model from heterogeneous instances, encoding it in SGML or XML, and replacing ad hoc, inconsistent or incomplete formatting or rendering with a stylesheet that applies complete presentation semantics in a consistent fashion.

3.3.2 Data-Centric Analysis

Increasingly the documents most important in e-business are not traditional publications but data-centric electronic messages. Such documents are far more regular in their logical structures and have minimal or arbitrary presentation features. They are optimized for consumption by applications and not for people. For these kinds of documents, the traditional document analysis methods are not well suited, and we turn to data analysis methods from information systems engineering for description and design techniques. Here, the focus is on computer data files and databases, developing sophisticated relational models that describe associations between data entities. This gave rise to the insight that methods and processes could be associated with these entities to create a more object-oriented view. This analysis approach describes documents as data models comprising of data objects having various properties and associations with each other.

3.3.3 Document Engineering

These two perspectives may come from different backgrounds, use different tools, terminology and techniques and arguably have different cultures but both offer valuable insight into designing effective documents.

These traditionally contrasting approaches to understanding documents are unified into an approach which we will refer to as Document Engineering. Document Engineering attempts to unify these two schools of thought into a common approach, to create coherent and consistent definitions.

3.3.4 Classifying Components

Firstly, when we look at a document, we can identify three categories of information:

· Content components – the pieces of information in the document or "gray matter".

· Structure components – the arrangement of the content or the "skeletal matter".

· Presentation components – the cosmetic display of both structure and content or "doesn't matter" (at least to application to application exchange).

One thing to bear in mind with this classification scheme is that some components may act as more than one type. For example, a DateOfBirth is a content component meaning, "the date on which you were born", it also is structural in that it contains a DayOfMonth, Month and Year component. Finally it has presentation facets such as DD-MM-YYYY. In this case the presentation affects both the structure and content. A date of birth shown as "11-01-1980" to a European is not the same as November First to Americans.

The hybrid or composite skill of component analysis in Document Engineering combines the skills of the data-centric data analyst who focuses on content components and the skills of the document analyst who traditionally focuses on structure and presentation. These can be viewed on a continuum known as the Document Analysis Spectrum.

[image: image2.jpg]
Figure 1 The Document Analysis Spectrum

Figure 1 illustrates the range of documents that make up the Document Analysis spectrum. At one end are idiosyncratic or one-of-a-kind documents with rich presentational components, which makes them artifacts requiring careful study. For example, the Engineering Data Compendium, an encyclopedia of human factors in design, is a complex and concrete merger of presentational and structural information.

At the other end of the spectrum are data-intensive electronic documents as used in e-business –transmission documents that support a business transaction. Here, content becomes all important and each document follows a well-defined and regular schema. In such cases, structural components are often just pure “containers” for content components, and presentational components are usually unimportant or undetectable.

In between these endpoints are documents that exhibit regularity in data content but for which presentation remains important. Product catalogs or lecture slides are good examples.

Regardless on where they appear on this spectrum, the basis upon which we assemble components and structures into the super-structures we know as document definitions is the context of their use.

3.3.5 Analysis of Document Components

Initially, our document models will be tightly coupled to the implementation as they appear in the physical artifacts being studied. This will be probably be influenced by the technology involved in its production. For example, if the printed document artifact we are analyzing has a three line address description, it seems natural to model this as three lines of address description. Yet this structure may have been determined by the space available on the original form.

The models that contain these technological constraints or features are the 'physical' models. Physical models reflect the technology used to implement the document. This technology view shows HOW things work.

In our document model, we should attempt to remove presentational features. Presentational features may bind our data model into un-necessary application specific uses. For example, the formatting of the DateOfBirth fields is not significant, only its structure and the components used. “November 1st 1980” is the equivalent to “11-01-1980” and “the first of November 1980”.

Good analysis also encourages us to look beyond the physical model, to ask WHY things work. This requires a conceptual view, not constrained by technical features. Here we can see beyond the three line address description constraint and recognize address descriptions as a concept. We want to look at the concepts behind the component, to find out why is it doing these things. These results represent 'logical' models. This is shown in Figure 2. as the move to a higher layer of Analysis on the left hand side of the diagram. Now we try to separate content from structures, to establish their independent meaning. For example, why is “11-01” just a different presentation for “the first of November”? Because each contains a DayOfMonth, Month and Year, alebit in different format. Each of these components has meaning outside the DateOfBirth and a date structure can also be used for other purposes.

[image: image3.png]
Figure 2 The Document Analysis Roadmap

3.3.6 Identifying Content and Structural Components

We can think of structure as a template and content components as being associated with this template. For example, the semantic content of an Address is associated with a certain structure, a LineItem would be associated with another structure, etc.
The most important aspect of building logical models for data is to determine what constitutes ‘content’ and what is ‘structure’.

Fortunately this problem has been tackled in the past by a process known as normalization. Normalization is a concept taken from relational theory developed in the 1970s. It has primarily been used in the design of relational databases but has application to other forms of data modeling including those faced by XML vocabularies such as UBL.

The objective of relational theory is to do the following…

· Identify entities – which are officially known as ‘relations’ (but that gets too confusing). In UBL, we also know these things as Object Classes or Business Information Entities. In SGML/XML they are often referred to as containers or elements. These are the structures of our data model. Broadly speaking, entities are things that are of interest. They can be identified by nouns that contain logical groups of other stuff. Entities may be temporal, such as events and activities or physical, such as tangible objects, organizations, people, products, etc.

· Identify entity attributes. Within each entity there are individual parts (that’s what makes the entity an entity). Relational theory calls these parts attributes, but in UBL we call these Properties or Business Information Entities. These can also be identified from nouns that use the entity for a pronoun. For example customer’s name suggests that name is an attribute of an entity called customer. These are the content components of our model.

· Identify relationships between these entities. Entities have complex networks of relationships with others. In UBL, we see these as roles or properties of object classes. We may be able to describe these by verbs that associate two entities. These relationships also have a cardinality and existence value that can be implied from the verb. For example “must include” implies a one to many, “may include” implies zero to many, “makes booking” implies many to many, “currently married to” implies a zero or one to one relationship (we hope!), and so forth. These relationships form the nested sub-structures within our model.

· Identify key attributes. A good relational model defines the attributes required to uniquely identify every instance of an entity, i.e. the key values. Every entity occurrence should have at least one way it can be uniquely identified. This may mean using an explicit unique identifier attribute (e.g. DUNS Number) or a combination of attributes that guarantee uniqueness (e.g. Country and State of Issue and Driver’s License Number). Whilst not technically required for the UBL model, these key attributes provide a useful check for the integrity of our model.

The technique by which these components are refined into a relational model is called normalization. The purpose of normalization is to produce data structures containing the minimum of redundant data. Redundant data leads to data integrity problems, ambiguity of semantics and un-necessary duplication. Properly normalized data models are elegant and efficient.

3.3.7 Normalizing the data model

The principles of normalization are not completely transferable to the design of document models because the latter are generally expressed as hierarchical rather than relational models. In this case relationships between entities will be expressed as repeatable sets of nested structures. That is, in a tree rather than a network structure. Nevertheless, we have already been following some of these normalization principles informally in UBL and have been encouraged by the results. It is hoped that by making these principles explicit we will both speed up our own work and enable others to follow our methods.

For our vocabulary development we need only focus on the first three stages of normalization – known as the First, Second and Third Normal Form.

· First Normal Form - ensure that all of the attributes are discrete i.e. can only take a single value. This is achieved by the removal of repeating groups into their own entities. For example, an Order entity may contain attributes for item descriptions, prices and quantities. These are not discrete attributes, there can be many prices, descriptions and quantities for each Order. First Normal Form would mean these attributes are separated into their own LineItem entity.

· Second Normal Form - split off into separate entities any attributes that do not wholly depend on the entire key. For example, the item quantity depends on the precise line item on a specific Order. This particular occurrence of quantity applies only to this particular occurrence of line item. Whereas, description and price may be the same for other occurrences of this item on different orders. This means they are not dependant on the line item – more likely to a product catalogue of item descriptions and prices. Second Normal Form tells us to separate these non-dependant attributes into their own entity, possibly called product or item.

· Third Normal Form - ensure that all Non-Key attributes are independent of one another. For example, Order may contain a customer’s name and their account code. These non-key values may have some dependency on each other and if so, should also be separated into another entity, e.g. customer.

Whilst these steps appear straightforward, the correct normalization of most business data models requires considerable analysis and interpretation of both document artifacts and business practices. Third normal form provides the correct containerships structures suitable for XML schema definitions, because it provides an unambiguous way of grouping components that is not driven by presentational rules alone. For components to be in containers they must have a single, logical dependency on each other.

Furthermore, using these techniques will deliver a logical model that is both application independent and yet capable of being directly integrated with other forms of relational models such as in a database management system.

3.3.8 Applying Analysis to UBL
Before going further, we should ensure this approach conforms to the UBL objective of alignment with the ebXML Core Component Technical Specification.

Firstly, in accordance with the Core Component Technical Specification, UBL refers to its components as Business Information Entities. Using the terms of the preceding section, a Basic Business Information Entity is a content component – an attribute that contains pieces of data. An Aggregate BIE has the structure of an entity containing other BIEs. However, where this Aggregate BIE is used within another Aggregate BIE it represents an instance of a relationship and is therefore content. Remember that we should think of structure as a template and content as an association with this template.

For example, an address is an entity structure with several attributes as content, such as street and city. Where an address occurs within another structure, such as organization, the organization will have an attribute content of an address. This is the occurrence of address within organization.

Also in accordance with the Core Component Technical Specification, UBL has adopted the CCTS and ISO/IEC 11179 naming convention for its components. This means each component has a (tripartite) Data Element Name constructed from the Object Class, Property Term and Representation Term. This naming convention promotes the idea that “a [Representation Term] represents the [Property Term] of the [Object Class].” For example, “a name represents the street of an address”. Both Object Class and Property Term also allow the use of repeating qualifiers to further refine the name. For example, our street BIE above may have a property qualifier of ‘additional’ and object class qualifier of ‘postal’. Therefore, we can have “a name represents the additional street of a postal address”.

3.3.8.1 Where are the Core Components?

Business Information Entities are core components of information used in a specific context. UBL assumes each core component has neutral context for a de-contextualized BIE. Or, using reverse logic, we can say that a core component is a BIE without any context. For example, when we identified the BIE ShippingContact and BillingContact, we also identified that these were two different contexts for a Contact. This meant that we had also identified a de-contextualized BIE called Contact. By doing this we avoid the need to define the ‘core’ components separately, they are just BIEs that can be used without any context. In this way, the UBL Library can be seen as a set of ebXML compliant Business Information Entities expressed in XML syntax.

3.3.8.2 Aligning the terminology

The relationship between these concepts is best explained by the following table.

Table 1 Relationship of Concepts and Terms

	Logical Model
	Classification
	Naming Rules
	CCTS
	XML

	Relationship
	Nested Structure
	Qualifier
	Nested Aggregate Business Information Entity
	Nested container

	Entity
	Associated with a Structure
	Object Class
	Aggregate Business Information Entity
	Container

	Attribute
	Content
	Property
	Basic Business Information Entity
	Element

	Data type
	Associated with a Structure
	Representation Term
	Core Component Type
	Type

3.3.8.3 Data Types

Data types are an important concept in the UBL meta-model. In abstract form, data types are just another form of entity/object class/aggregate BIE. For example, a code data type will have its own attributes such as responsible agency, version, descriptive value, etc. So a code is yet another structure. Within this code, the code version may contain a delta plus an increment value, such as “1.8b” - another structure. The delta may be an integer and the increment a character, each may have further structure, and so on and so on, until we reach binary encoding systems. Fortunately, there is a common view that we should fix a level at which there are ‘basic types’, i.e. not defined further in our logical model. Candidates for these are structures such as code, quantity, date, etc. It is anticipated that these definitions will evolve from work currently underway within the development of the Core Component Technical Specification.

For further clarification, there are separate UBL position papers dealing with the identification and use of these data types:

· Uses of Code versus Identifier

· Date and Time representation

3.3.9 Document Design
Analysis brings us to the stage where we have a logical model of the metadata we are interested in; we know what our structures and content are and what we should call them. Experience tells us that building these sorts of conceptual models is where we start to understand the true nature of the system. It is this understanding that leads to the possibility of improvement that is design. Indeed, at several points during our analysis a voice cries out ”There must be a better way”. It is when we study the logical model of the existing system that we start to formulate what that better way may be. This may mean removing redundant data, re-using common components or rationalizing a document's structure. In Figure 2. we are now moving across the top part of diagram as part of the Design process.

Importantly, it is this level of analysis that allows us to re-use existing patterns from other logical models. This is a formal way of stating what we do intuitively when we apply familiar patterns for structures such as ‘address’. We take implicit patterns from postal labels, existing forms and maybe libraries of various business vocabularies.

A good methodology facilitiates the development and re-use of patterns – as we shall discuss later.

Another key point to emphasize is that analysis and design are two separate activities. We all suffer the temptation to build a ‘better way' into our models too early. This often leads to inaccurate representations of existing systems and therefore poorer ultimate designs. For example, combining our three line address into a one line address would not be an elegant design improvement. A better design for our address structure may be room number, floor number, street number, building name and street name, because we have a requirement to re-use the address description in other processes (such as sorting) that require this finer granularity. So we see that good design is based on the requirements on the model that are in turn, given to us by the context of use.

3.3.10 Context

Context is the circumstance or events that form the environment within which something exists or takes place. Recognition of context is an important factor to promote re-use of common patterns using customized refinements. Where we have similar circumstances or events we can use similar patterns of components.

In many vocabularies, context is suggested by the component’s name. For example, we may have a component known as Contact that describes a person or position that acts as a communication point in an enterprise. In the context of goods delivery, we may have a ShippingContact and in the context of payment we may have a Billing Contact.

However, the precise context of a Business Information Entity can be defined by a whole set of context drivers and associated values.
For example, if a US glue manufacturer is selling to a French shoemaker, the context values might be as follows:

Table 3 Context Classification Example

[image: image4.jpg]
Such examples lead us to understand that implementation of context is more complex than simply using a naming convention.

3.3.10.1 Applying Context to UBL

UBL is following the set of eight context drivers identified by the Core Component Technical Specification. These drivers are currently known as:

· Business Process - The business process as described using the ebXML Catalogue of Common Business Processes as extended by the user.

· Product Classification - Factors influencing semantics that are the result of the goods or services being exchanged, handled, or paid for, etc. (e.g. the buying of consulting services as opposed to materials)

· Industry Classification - Semantic influences related to the industry or industries of the trading partners (e.g., product identification schemes used in different industries).

· Geopolitical - Geographical factors that influence business semantics (e.g., the structure of an address).

· Official Constraints - Legal and governmental influences on semantics (e.g. hazardous materials information required by law when shipping goods).

· Business Process Role - The actors conducting a particular business process, as identified in the Catalogue of Common Business Processes.

· Supporting Role - Semantic influences related to nonpartner roles (e.g., data required by a third-party shipper in an order response going from seller to buyer.)

· System Capabilities - This context category exists to capture the limitations of systems (e.g. in existing back office can only support an address in a certain form).

Part of the analysis and design of UBL Library components will include the identification and classification of contexts to which the component applies. The UBL meta-model must accommodate values for each of these drivers. The actual values themselves are currently being developed by the UBL Context Drivers sub committee. These context values will be used by the UBL Context Methodology engine to produce customized schemas for specific implementations.

Throughout ebXML and UBL, the use of context is an evolving piece of work that will be subject to refinement through experience. For example, an area which requires further investigation is the idea of dynamic context – where a BIE may have its context ‘promoted’, perhaps using industry 'synonyms' for BIE names, by refining the message contexts fixed at the time of schema generation. An example of this may be where a BIE is affected by business rules that are not defined in the original schema but are provided in the data. This occurs in situations such as “when the value of a total order is greater than $US100,000 it requires a direct debit bank account detail”.
3.3.11 Using Patterns

Models are valuable tools for identifying repeating or reoccurring features. We call these features, patterns. Patterns exist in both business processes and data models. Process patterns may be significant where they affect the context of data use. For example, Ship-to-Order is a business process pattern which has certain data requirements associated with it.

Data patterns may be structural or content patterns. They may be generic or context-specific. They can be logical, syntax independent patterns (e.g. UML models, ELM tree diagrams, spreadsheet forms, etc.) or physical patterns (e.g. EDIFACT, X12 or XML fragments). Logical patterns have more scope for re-use because they can be re-used in a variety of different physical models. Unfortunately, logical models are harder to find than physical ones. Most vocabulary owners publish their physical models (e.g. schemas or directories) rather than the logical models used to derive them.

Once patterns are identified they provide opportunities for simplifying structures and processes by replacing low-level specific descriptions with more abstract ones.

In addition to improving designs, patterns promote reuse. Reuse has the immediate benefit of reduced maintenance, encouraging and reinforcing consistency and standardization. Indeed, re-using ‘logical’ model components encourages interoperability between these disparate ‘standards’. This is the basis for the ebXML ‘syntax-neutral’ Core Component architecture.

In reality there are often tradeoffs between using patterns and creating a customized model.

· The benefit of using a pattern should exceed the effort spent studying and selecting it.

· There may be "network effects" brought about by reliance on third party patterns.

· The temptation to "force fit" a problem into a pattern creates a gap with the original requirements.

Ultimately it is a designer’s decision as to whether it is better to conform to a pattern or to customize a solution to achieve an exact fit.

Finally, if patterns and other reusable artifacts of models are to be exploited they need to be easy to find. This most often implies a reuse repository or library of some kind such as an ebXML Registry.

3.3.11.1 Patterns and UBL

The UBL Library is a user of external patterns through the use of XCBL and the EDIFACT and X12 patterns carried within it. We are also seeing the value of other patterns, for example, the Period ABIE used by ACORD. Our methodology will help us establish the logical models for these patterns and thereby assist in their re-use.
The UBL Library is also potentially a provider of both logical and physical patterns to others who wish to use the common components within their own vocabularies or extend UBL by context to other specific domains.

3.3.12 Assembling Document Definitions

Having defined the content components and structures for our library, the next stage is to define actual documents. Document definitions can be viewed as assemblies of structures and their content components based on a required business context.

Document assembly means creating logical document definitions. An hierarchical, top-down and nested tree structure is still the most practical way to define any document’s structure. It is also complementary to markup languages such as XML.

We assembly ‘logical’ document definitions by creating pathways that establish the top level structure and then navigate through our logical model based on rules provided by the context involved. These may mean reduction of extension of the model. For example, context may determine that a ShippingContact structure is not required for vendor managed inventory environment but that a Contract reference is always required. In which case our VMI Order document would not include a ShippingContact and the normally optional Contract structure would become a mandatory component.

The purpose of the Logical Design is to refine the result of the Logical Analysis in order to make a formal, i.e. precise and unambiguous, Message Specification. In the process, it will identify items to be reused, such as Message Components and Message Elements.

Logical Design refines both the precise structure of the Message(s) involved, and the precise and full description of the interaction between all Business Role(s) involved.

The deliverables of the Logical Design phase are:

· Message Definition Diagrams

· Textual Business Rules that are written in a formal language and that complete the formalisation of the logical model.

3.3.12.1 Document Assembly and UBL

In the first instance, UBL should adopt a hand-crafted approach to document assembly. However, some useful work has been started in the working drafts produced by Mike Adcock under the title of “Message Assembly Primer”.

Ultimately, it may evolve over time that a more formalized and context-engine driven approach could be implemented.

3.3.13 Document Schema Encoding

Having established new logical models for our documents, we have to recognize the constraints of the technology in which they will operate. Any designs for new documents and processes are purely theoretical unless we take them and put them in the real world.

We know WHAT we want, now we have to decide HOW it can be built. We are now moving back down the right hand side of Figure 2. into the process of implementation. We should also remember that these documents are to form the interfaces between applications, then it is the applications that provide the presentational features to the document content. For example, we may use stylesheets to transform our address description into two lines of text for the printed form and a different stylesheet for sorting by postal delivery.

3.3.13.1 Document Encoding and UBL

For UBL document encoding means applying the rules of the UBL Naming and Design Rules sub committee to our logical model and producing physical models, also known as XML Schemas.

4 Recommendation

UBL needs a formal methodology that can be used by both UBL members and the broader community. This will enable a broader range of interested parties to understand, refine and extend the UBL Library and to develop models for contextualized situations.

It is clear that we cannot continue with our current processes and achieve this goal.

We also recognize that the prescriptive methodology given by the UMM does not encompass analysis and design of documents or their components. In addition, the syntax independent CCTS meta-model does not include the XML features required by UBL.

Therefore, we recommend that UBL both formalize the UBL Library meta-model and use a Document Engineering approach to populate this meta-model. This approach includes analysis, design and re-use of design patterns from other modeling efforts. The approach outlined in this paper has emerged in part from the work of UBL Library Content to date. It is not a radical departure from what we are currently doing, nor is it intended to be a prescriptive methodology. Rather it presents a formal landscape in which to place our thinking.

4.1.1 Recommended UBL Meta-model

The UBL meta-model defines the way we describe the structures and content components of the UBL vocabulary.

Currently the meta-model defines structural components as re-usable types, but they are more correctly the Object Classes of our model. Content components are known as Business Information Entities. Therefore, we can describe our meta-model using a class diagram as in figure 4.

[image: image5.wmf]Business Information Entity

Object Class

Property

Data Type

Basic Business Information Entity

Aggregate Business Information Entity

Representation

Figure 3 UBL Meta-model

The current UBL meta-data is presented as attachment A to this document. However, this is subject to modifications and should be maintained in a separate and properly versioned form.

4.1.2 Recommended UBL Notation

The current spreadsheet matrix used by UBL has proven the most versatile and manageable in the work to date. However, it is clear that to maintain consistency and integrity we need more of a database view. This will allow us to find existing components and promote re-use where possible. It is recommended that a database be constructed using the meta-model as its schema which will become the main repository of the UBL model.

Secondly, we need a view that encapsulates the big picture of the UBL model. Therefore, it is also recommended that a graphical notation such as UML Class Diagrams be used to create this view. Such a notation could provide a top-level, exploding view. This is especially valuable when presenting the UBL Library to other groups.

Ideally, both recommendations should be combined in a single repository with tools to generate the appropriate views. The UBL Tools and Techniques subcommittee are asked to evaluate these requirements and make a recommendation.

The final notation for the UBL Library is the XML Schemas themselves. These represent the physical implementation of the logical UBL models.

4.1.3 Recommended UBL Processes

In terms of processes, we recommend that UBL adopts the principles of Document Engineering for the analysis and design of Business Information Entities.

These techniques will allow developers of UBL Library and its context driven extensions to populate the UBL meta-model.

The resultant models will contain enough meta-data to allow the automatic generation of XML Schemas based on the rules of the UBL Naming and Design Rules sub-committee.

Attachment A. The UBL Meta-data

Business Information Entity

· UBL UID

· UBL Name

· BIE Dictionary Entry Name

· Object Class

· Property Qualifier

· Property Term

· Representation Term

· Type

· Occurrence

· Basic/Aggregate

· UBL Definition

· Code Lists/Standards

· Analyst Notes

· Core Component UID

· Context Business Process

· Context Region (Geopolitical)

· Context Official Constraints

· Context Product

· Context Industry

· Context Role

· Context Supporting Role

· Context System Capabilities

· length
· min/maxLength
· pattern
· enumeration
· whiteSpace
· min/maxInclusive
· min/maxExclusive
· totalDigits
· fractionDigits
Core Component Type

· UID

· CCT

· Definition

· Remarks

· Object Class

· Property Term

· CCT Components

Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� Ref: http://www.omg.org/

� Ref: http://www.gefeg.com/tmwg/

� Glushko and McGrath – Document Engineering for e-Business, 2002

� Glushko and McGrath – Document Engineering for e-Business, 2002

� “Message Assembly Primer”, part 1 (Message Modelling in Practice) and part 2 (Message Modelling Principles). Version 0.1 Release Date: 2002-07-01 by Mike Adcock

22

12
p-mcgrath-methodology-02
1
July 30, 2002

