Draft X12/XML Design Rules

Draft X12 XML Design Rules

TABLE OF CONTENTS

3Forward

i)
Background
3
ii)
Business Processes and Core Components
4
iii)
Rationale
7
1.0
INTRODUCTION
8
2.0
SCOPE
8
Peter Pruyne
8
Indicating Requirements and Recommendations
8
3.0
RESOURCES
8
4.0
MESSAGE DESIGN PHILOSPHY
8
To be provided by philosophy group
8
5.0
SCHEMA DESIGN PHILOSPHY
9
To be provided by philosophy group
9
6.0
DESIGN RULES
9
Scope of Purpose
9
6.1
General
9
6.2
Message
11
6.3
Schema
12
6.4
Developer Guidelines
14
6.5
Naming and Defining Rules
16
6.5.1
Tag Structure
16
6.5.2
Tag Name Content
16
6.5.3
Representation Types
18
Annex A: Definitions
19
Document Entity
19
Annex B: Notional X12/XML Message
23
Annex C: Notional X12/XML Schema
26
Annex B: Message example document
26
Annex C: Schema example document
26
Annex D: A model of the message design process
26
Annex E: A model of the schema design process
26

Forward

Mike Rawlins.

i) Background

The Extensible Markup Language (XML) was developed by the World Wide Web Consortium (W3C), the de facto standards body for the Internet and the World Wide Web. The first working draft paper on the concept of XML was published 14 November 1996. The original goal was, "…to enable SGML to be served, received, and processed on the Web in the way that is now possible with HTML." A primary design consideration was to design XML, "…for ease of implementation, and for interoperability with both SGML and HTML." Much of the original concept was applied to using XML as a means for graphical communication. The idea of its use for conducting EDI was applied later when the first studies were done on this subject in late 1997. Early work on XML/EDI was conducted both jointly and independently by ANSI ASC X12, UN/CEFACT, CommerceNet, and the XML/EDI Group as well as other organizations. The goals of XML/EDI as defined by the XML/EDI Group are:

· To deliver unambiguous and durable business transactions via electronic means

· Utilize existing systems and processes

· Protect the investment in traditional EC/EDI

· Provide a migration path to next generation XML/EDI systems

· Use existing business processes as implemented

· Facilitate direct interoperation in an open environment

In November 1999, work began on the ebXML project, a joint UN/CEFACT and OASIS initiative, whose mission was to provide an open XML-based infrastructure enabling the global use of electronic business information in an interoperable, secure, and consistent manner by all parties. The project concluded in May 2001 and delivered a modular suite of specifications that enable enterprises to conduct business over the Internet. The specifications address the following areas:

· Messaging Services

· Registries and Repositories

· Collaborative Protocol Profile

· Implementation, Interoperability, and Conformance

· Core Components and Business Process Models

The ebXML specifications are currently being transitioned to UN/CEFACT and OASIS for the purpose of developing global electronic business standards.

X12 began work on XML/EDI in 1998 with the creation of an ad-hoc XML work group that transitioned to X12C TG3. X12C TG3 in conjunction with CommerceNet produced a paper entitled “Preliminary Findings and Recommendations on the representation of X12 Data Elements and Structures in XML”. In addition to this collaborative effort, X12C TG produced a technical white paper providing additional information on using XML to represent business exchanges. In February 2000, the X12 Steering Committee chartered the XML Task Group to develop recommendations for the Steering Committee in conjunction with the X12 subcommittees on XML. The resolutions approved by the Steering Committee in June/October 2000 were:

· The ANSI ASC X12 Steering Committee fully supports the continuation of the mission, goals, and efforts of ebXML. ASC X12 will pursue its’ XML development efforts within the framework defined by ebXML.

· X12 will develop accredited, cross-industry, XML business standards. All XML business standards and associated schema development work will be done in collaboration with UN/CEFACT Work Groups and shall be based on the UN/CEFACT business process/core component work.

· The X12 Steering Committee will petition ANSI for official recognition as an ANSI accredited XML business standards body

· X12C will function as the X12 XML technical experts with respect to all internal and external XML technical specifications including the development of XML design rules in conjunction with X12J

· The X12 Steering Committee shall task DISA to begin working with X12X TG4 WG2 to market X12’s role in developing ANSI accredited XML business standards.

· The X12 Steering Committee shall task the PIG to include XML standards development as part of their work plan

· The X12 Steering Committee shall task the Process Iimprovement Group (PIG) to work with the Policies and Procedures Task Group (P&P) to provide expertise and assist the EWG/X12 on the Joint Development Task Group in the development of an aligned approval process that meets the needs of both organizations related to the development and maintenance of XML core components.

Every effort has been made to build on the experience and work done previously by ebXML, the UN/CEFACT Work Groups, CommerceNet, and ANSI ASC X12 in document definition methodologies and core components. The X12/XML design rules presented in this document are based on design decisions reached through a process of issue identification, presentation of examples, and evaluation of the pros and cons of each available action. They provide a set of syntax production rules that define the conversion of standardized, cross-industry business messages into XML documents.

ii) Business Processes and Core Components

The business process determines characteristics of the business document payload. For example, if the business process is ordering then the order information must specify details about the order itself (payment, delivery, references to external business agreements, etc.). There are certain characteristics of the Order Document, which typically do not vary across industries, while other details (such as those required because of product type) will vary dramatically.

Business documents, by their very nature, communicate a semantically complete business thought: who, what, when, where and why. The what in electronic business terms is typically the product. It is widely recognized that products are goods or services. Goods are manufactured, shipped, stored, purchased, inspected, etc., by parties. Services are performed by parties, and may involve goods and/or parties. Parties can be either organizations or individuals, and can be associated with other parties, and products. And these products have events associated with them, inspections, transportation, building, sale, etc.

This problem is addressed by a combination of structured information and the use of context. This structure uses a series of layers, designed to take into account commonality across industry business process. Further the structure is designed to support specialization based on the specific use of contexts. Context is the description of the environment within which use will occur. For example, if one was to say that “someone was pounding on my car with a hammer”, the response is very different depending whether it is a repair shop or a neighbourhood youth. Context is what is used to direct interpretation.

This figure illustrates how core components can be constructed into document parts in the context of particular business information requirements. These parts can then be sewn together into business documents.

[image: image1.wmf]Business document

in a particular

context

Document

part in a

particular

context

Context

Component 2

Component 1

Aggregate

A component is a ‘building block’ that contains pieces of business information, which go together because they are about a single concept. An example would be bank account identification, which consists of account number and account name.

Core components are components, which appear in many different circumstances of business information and in many different areas of business. A core component is a common or “general” building block that basically can be used across several business sectors. It is therefore context free.

Re-use is the term given to the use of common core components when they are used for a specific business purpose. The purpose is defined by the combination of contexts in which that business purpose exists. Each context specific re-use of a common component is catalogued under a new business information name ‘that uses core component X’.

A domain component is specific to an individual industry area and is only used within that domain. It may be re-used by another domain if it is found to be appropriate and adequate for their use, and it then becomes a core or common component.

Components can be built together into aggregates.

As described above for components, aggregated components can be common components. These are generic and can be used across several business sectors. They can be re-used for a specific business purpose, defined by a combination of contexts. Each context specific re-use of a common aggregate component is catalogued under a new business informant name ‘that uses core component X’.

There are also domain specific aggregated components.

Aggregates and components can be gathered into ’document parts’. These are useful assemblies which can individually satisfy a business process’s requirement for information, or which may be ‘sewn together’ in a structured way to achieve the same. For example, the structured combination may be to satisfy a business process’s need for information presented in a particular way for efficiency of processing.

An individual document part and the ‘sewn together’ parts, come at increasingly domain-specific and context-specific levels. They form documents or partial documents that satisfy a business process or a part of a business process.

[image: image2.wmf]Statement Of

Statement Of

Intent

Intent

Document

Document

Schema, XML

Schema, XML

Samples

Samples

Requirements

Requirements

Documents

Documents

Analyze

Analyze

Business

Business

Process and

Process and

Business

Business

Information

Information

Business Process

Business Process

Definition,

Definition,

Document Definition

Document Definition

Implement

Implement

Service/

Service/

Application

Application

Business Process

Business Process

Definition

Definition

Gather

Gather

Require-

Require-

ments

ments

Develop

Develop

Schemas

Schemas

Business document

in a particular

context

Document

part in a

particular

context

Context

Component 2

Component 1

Aggregate

…informs context...

…describes content...

…populates content...

This figure illustrates how core components can be built into business documents by explicitly linking components with the ebXML Business Process Worksheets, and the underlying modelling approach. The top right-hand corner of the figure comes from figure 8.4-1 in the ebXML Business Process Overview document.

Note that in this instance document parts are pieces of business information required to satisfy a particular business process, from a specific contextual viewpoint.

iii) Rationale

1.0
INTRODUCTION
The X12/XML design rules have been prepared by X12C TG3. They have been developed on behalf of the X12 lettered subcommittees who are responsible for the development of X12/XML messages. They presume a knowledge of the X12 process and procedures. The X12/XML design rules are specific to designing XML schema to represent X12/XML instance documents for cross-industry business messages.

2.0
SCOPE

Peter Pruyne

Indicating Requirements and Recommendations

The terms "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are used and should be interpreted in accordance with IETF RFC 2119.

3.0 RESOURCES

The following documents provided references for this document.

· http://www.xfront.com/ - XML Schema Best Practices as maintained by Roger L. Costello

· http://www.ibilio.org/xml/ - Café Con Leche

· http://www.w3.org/XML – XML Schema Specifications

· http://xml.coverpages.org/sgmlnew.html – Archive of Robin Cover’s XML Cover Pages at OASIS

· http://www.ietf.org/rfc/rfc2119.txt?number=2119 – Internet Engineering Task Force Request for Comments 2119

· http://www.tibco.com/products/extensibility/resources/index_best.htm – Tibco’s XML Resources Center Best Practices

· http://www.ebxml.org – ebXML Project

· http://www.ebtwg.org – UN/CEFACT electronic business temporary work group

· Ducket, Jon, Oliver Grffin, Stephen Mohr, Francis Norton, Ian Stokes-Rees, Kevin Williams, Kurt Cagle, Nikola Ozu, and Jeni Tennison; Professional XML Schemas; Wrox Press, Birmingham UK, 2001

· Dodds, Leigh, “Designing Schemas for Business to Business E-Commerce”, http://www.xml.com/lpt/a/2000/06/xmleurope/ecommerce.html
· Gregory, Arofan T. “XML schema design for business-to-business e-commerce”, XML Europe Conference, 2000

· http://www.ebxml.org, Core Components Overview Vestion 1.05, May 10, 2001.

· http://quickplace.hq.navy.mil/QuickPlace/navyxml/Main.nsf/057A71D114B95B0D85256AF5006CAD86/1921E59CBABDEE2D85256AFB00605CB3, Initial DON XML Developer’s Guide, October 29, 2001

4.0 MESSAGE DESIGN PHILOSPHY

To be provided by philosophy group
5.0 SCHEMA DESIGN PHILOSPHY

To be provided by philosophy group

6.0 DESIGN RULES

Scope of Purpose

These design rules provide guidelines for designing X12/XML Schemata and X12/XML instance documents. The rules are broken down into five areas:

· General rules

· Message rules

· Schema rules

· Developer guidelines

· Naming and defining rules

The general rules provide rules that apply to both the development of X12/XML messages as well as X12/XML Schema. The message rules provide rules applying only to the development of X12/XML messages or instance documents. The schema rules provide rules applying only to the development of X12/XML Schema. The developer guidelines provide best practices for developers of X12/XML schemata. The naming and defining rules provide rules for naming and defining tags.

6.1
General

Rule 6.1.1
X12/XML schemata and messages MUST be based on the World Wide Web Consortium (W3C) suite of technical specifications holding recommendation status.

Comments
11/8/01 – agreed

Rule 6.1.2
X12/XML tag names MUST be upper camel case for elements and lower camel case for attributes.

· In upper camel case, the first letter in the name is upper case, as is the letter beginning each subsequent word such as PurchaseOrderNumber

· In lower camel case, the first letter in the name is lower case and letter beginning each subsequent word is upper case such as purchaseOrderNumber

Comments
11/8/01 - Restrict special characters

Rule 6.1.3
Developers SHALL adopt the came case conventions as defined by the ebXML Technical Architecture when creating XML component names

Comments

Rule 6.1.4
X12/XML element names, attribute names, etc. MUST use Oxford English

· The content/value of tags, attributes, etc. may be in any language

Comments
11/8/01 – open

Rule 6.1.5
An X12/XML message SHOULD represent a single business document (such as invoice or purchase order)

Comments
11/8/01 – agreed

Rule 6.1.6
The business function of an X12/XML message MUST be unique and must not duplicate the business function of another X12/XML message

Comments
11/8/01 – agreed

Rule 6.1.7
The name of the X12/XML message set MUST be consistent with its definition

Comments
11/8/01 – agreed

Rule 6.1.8
Each X12/XML message SHOULD correspond to a business process model or models in the ebXML catalogue of business processes or an X12 catalogue of business processes if available

Comments
11/8/01 – open

Rule 6.1.9
X12/XML messages MUST use the UTF-8 character set as the default

Comments
11/8/01 – open

Rule 6.1.10
X12/XML messages MUST use existing ANSI ASC X12 versioning mechanisms and release schedules

Comments
11/8/01 – open

Rule 6.1.11
X12/XML messages MUST convey data as XML elements

Comments
11/8/01 – open

Rule 6.1.12
X12/XML attributes MUST NOT be used to convey data

Comments
11/8/01 – open

Rule 6.1.13
X12/XML attributes MUST be used to convey metadata only

Comments
11/8/01 – open

Rule 6.1.14
All X12/XML messages sets MUST use the following namespace(s)

· TBD

Comments
11/8/01 – open – deferred for further discussion

Rule 6.1.15
Developers MUST follow the ebXML guidance for usage of acronyms or abbreviations in XML component names:

· Abbreviations MUST NOT be used

· Acronyms SHOULD be avoided, but when used MUST be in uppercase regardless of their position in XML component names or the camel case convention

· Commonly used acronyms MAY be used

· Acronyms used in component names SHOULD be spelled out in the XML schema via an annotation

Comments
11/8/01 – agreed – Note – EPA exception

Rule 6.1.16
Application specific metadata (such as SQL statements or API calls) that is of interest only to a single application MUST NOT be included in XML Schemata

Comments
11/8/01 – agreed

Rule 6.1.17
The number of attributes SHOULD be carefully considered and in general used sparingly

Comments
11/8/01 – agreed

Rule 6.1.18
Attributes, if used, SHOULD be used to provide extra metadata required to better understand the business value of an element

Comments
11/8/01 – agreed

6.2
Message

Rule 6.2.1
X12/XML messages MUST not use mixed content

Comments
11/8/01 – agreed

Rule 6.2.2
X12/XML messages MUST not use processing instructions

Comments
11/8/01 – deferred for further discussion

Rule 6.2.3
An X12/XML message MUST contain:

· One and only one document entity element consisting of at least one aggregate information entity element

· At least one aggregate information entity element consisting of additional aggregate information entity elements and/or basic information entity elements

Comments
11/8/01 – deferred

Rule 6.2.4
The document entity tag set MUST contain at least one aggregate information entity element

Comments
11/8/01 – deferred

Rule 6.2.5
The document entity tag set MUST NOT contain any basic information entity elements that are not part of an aggregate information entity element

Comments
11/8/01 – deferred

Rule 6.2.6
The document entity element name MUST be unique

Comments
11/8/01 – rework

Rule 6.2.7
The aggregate information entity element name MUST be unique

Comments
11/8/01 – rework

Rule 6.2.8
The basic information entity element name MUST be unique

Comments
11/8/01 – rework

Rule 6.2.9
The aggregate information entity element MUST contain one or more basic information entity elements and may contain embedded aggregate information entity elements

Comments
11/8/01 – agreed

Rule 6.2.10
The aggregate information entity element MUST contain a uid attribute containing the UID from the ebXML core components dictionary if available

Comments
11/8/01 – further discussion

Rule 6.2.11
The basic information entity element MUST contain a uid attribute containing the UID from the ebXML core components dictionary if available

Comments
11/8/01 – Agreed

Rule 6.2.12
The beginning document entity element MAY have the following attributes:

· bpId – business process identification – providing a reference to the ebXML catalogue of business processes

· version = version identifier such as 5010

Comments
11/8/01 – version issues

Rule 6.2.13
The beginning aggregate information entity and basic information entity tags MAY have the following attributes:

· uid – reference to core component in ebXML core component catalogue if available

Comments
11/8/01 – agreed

6.3
Schema

Rule 6.3.1
X12/XML schemata MUST be based on the W3C XML Schema Recommendations

· XML Schema Part 0: Primer

· XML Schema Part 1: Structures

· XML Schema Part 2: Datatypes

Comments
11/15/01 – agreed

Rule 6.3.2
X12/XML schema SHOULD be oriented toward data interchange as opposed to presentation

Comments
11/15/01 – agreed

Rule 6.3.3
X12/XML Schemata SHOULD use named types

Comments
11/15/01 – agreed

Rule 6.3.4
X12/XML Schemata MAY use type derivation by restriction or extension

Comments
11/15/01 – agreed

Rule 6.3.5
X12/XML Schemata MAY use type substitution

Comments
11/15/01 – deferred – need additional information

Rule 6.3.6
X12/XML Schemata MUST use the block attribute for disallowing type substitution if appropriate

Comments
11/15/01 – deferred – need more information

Rule 6.3.7
X12/XML Schemata MUST use built-in data types whenever possible

Comments
11/15/01 – agreed

Rule 6.3.8
X12/XML Schemata MUST/SHOULD/MAY use wildcards if they use namespace=”##other”

Comments
11/15/01 – deferred until namespace issues are resolved

Rule 6.3.9
X12/XML Schemata MUST NOT use type redefinition

Comments
11/15/01 – agreed

Rule 6.3.10
X12/XML Schemata MUST use one namespace for all instance documents that use a particular vocabulary

Comments
11/15/01 – deferred until namespace issues are resolved

Rule 6.3.11
X12/XML Schemata MUST use elementFormDefault=”unqualified”

Comments
11/15/01 – agreed

Rule 6.3.12
X12/XML Schemata MUST NOT use processing instructions

Comments
11/15/01 – agreed

Rule 6.3.13
X12/XML Schemata MUST use elements to convey data content

Comments
11/15/01 – agreed

Rule 6.3.14
X12/XML Schemata MUST NOT use attributes to convey data content

Comments
11/15/01 – agreed

Rule 6.3.15
X12/XML Schemata MAY use attributes for metadata

Comments
11/15/01 – agreed

Rule 6.3.16
X12/XML Schemata MUST declare elements and attributes locally except for the root element

Comments
11/15/01 – agreed

Rule 6.3.17
X12/XML Schemata MUST only use default or fixed values for non-critical information

Comments
11/15/01 – discussion – use of default specific for uid, bpid attributes

Rule 6.3.18
X12/XML Schemata MUST use annotations for all type definitions

Comments
11/15/01 – agreed

Rule 6.3.19
X12/XML Schemata MUST not use XML comments

Comments
11/15/01 – agreed

Rule 6.3.20
X12/XML Schemata MUST use the <documentation> and <appinfo> tags within the <annotation> tag to express comments

Comments
11/15/01 – agreed

Rule 6.3.21
X12/XML Schemata MUST NOT use notations

Comments
11/15/01 – agreed

Rule 6.3.22
X12/XML Schemata MUST NOT use named model groups

Comments
11/15/01 – agreed

Rule 6.3.23
X12/XML Schemata MAY/MUST NOT use named attribute groups

Comments
11/15/01 – open – need more information

Rule 6.3.24
X12/XML Schemata MUST NOT use substitution groups

Comments
11/15/01 – open – need more information

Rule 6.3.25
X12/XML Schemata MUST NOT use group redefinition

Comments
11/15/01 – open – need more information

Rule 6.3.26
X12/XML Schema components SHOULD be listed in roughly the same order that they appear in the instance document

Comments
11/15/01 – open

Rule 6.3.27
X12/XML Schemata MUST list simple types at the end of the schema document

Comments
11/15/01 – open

Rule 6.3.28
Developers MAY extend the XML Schema annotation <xsd:annotation> and <xsd:documentation> tag by further marking up information provided with custom tags

Comments
11/15/01 – open – to be verified

Rule 6.3.29
Developers SHOULD use XML Schemata to express enumeration constraints on XML elements and attribute values when such enumerated lists are of reasonable length and when code lists are considered stable (not likely to change frequently)

Comments
11/15/01 – defer

Rule 6.3.30
Code lists from which enumerations are taken SHOULD be referenced by URI or other pointers, so that analysts can lookup code values

Comments
11/15/01 – rule or guideline on copyrights

Rule 6.3.31
XML Schemas SHOULD include the version number in the header comments and SHOULD capture the version in an annotation to the root element of the document

Comments

6.4
Developer Guidelines

Rule 6.4.1
The selection of XML component names MUST be a thoughtful process involving business, functional, database, and system subject matter experts

Comments

Rule 6.4.2
In the schema design process, XML developers MAY use temporary or dummy XML component names while consensus is being reached on more carefully designed and defined names

Comments

Rule 6.4.3
Components registered with an ebXML-compliant registry MUST be reused if available for XML element names and element domain restrictions

Comments

Rule 6.4.4
When tags can not be found in an ebXML-compliant registry that are suitable for reuse as XML elements or when creating attribute or XML schema types, developers SHOULD create XML component names using the ISO 11179 as modified by ebXML with the following caveats:

· For XML elements, use an ISO 11179 compliant name or a business term if appropriate, in upper camel case

· When a business term is used in place of an ISO 11179 name, the ISO name SHOULD be captured in the schema via XML schema annotations

· For XML attributes, use an ISO 11179 compliant name in lower camel case

· For XML Schema Types, use an ISO 11179 compliant name in upper camel case

Comments

Rule 6.4.5
Developers SHOULD adopt the practice of developing schemas based on information exchange requirements identified via business process models

Comments

Rule 6.4.6
The information modeling process and the XML schema creation process SHOULD be separate and distinct steps

Comments

Rule 6.4.7
Business process models and corresponding document models describing information exchanged in the processes MAY use the Unified Modeling Language (UML) if appropriate

· Specifically, the UN/CEFACT adopted Unified Modeling Methodology (UMM) based on UML MAY be used for process modeling

Comments

Rule 6.4.8
Database modeling languages that are primarily oriented towards describing information via relational (keyed) structures SHOULD NOT be used for modeling of systems and information that will primarily use XML as the data exchange format

Comments

Rule 6.4.9
Schema development SHOULD NOT be solely the function of IT specialists

Comments

Rule 6.4.10
XML component names, in general, SHOULD NOT be taken directly from underlying relational database table and column names unless the elements within that database have been named and created in accordance with a standard that represents concurrence by an entire community of interest

Comments

Rule 6.3.11
Developers SHOULD, within reason, capture as much metadata as possible in a schema

Comments

Rule 6.4.12
XML Schema developers MUST provide carefully thought out comments within schema and stylesheets that provide basic information necessary to use and understand the document

Comments

6.5
Naming and Defining Rules

To accommodate the creation of new tags and provide guidance for new tag development, naming conventions are necessary. These naming conventions are consistent with ebXML naming conventions and complement ISO 11179 standards for data element names.

The following section defines rules for all new development of XML tag names. These rules are the “how” as opposed to the “what” for tag name formation. The section called Tag Name Content contains guidance on creating tag names.

6.5.1
Tag Structure

The following naming conventions SHALL be used in all X12/XML Schema creations

Rule 6.5.1
Element names MUST be in upper camel case (UCC) convention where UCC style capitalizes the first character of each word and compounds the name (example <UpperCamelCaseElement>

Comments

Rule 6.5.2
Schema type names MUST be in UCC convention (example <DataType/>)

Comments

Rule 6.5.3
Attribute names MUST be lower camel case (LCC) convention where LCC style capitalizes the first character of each word except the first word (example: <UpperCamelCaseElement lowerCamelCaseAttribute=”Whatever”/>

Comments

Rule 6.5.4
Acronyms SHOULD be avoided, but in cases where they are used, the capitalization MUST remain (example <XMLSignature/>) and SHOULD be defined using the schema annotation mechanism

Comments

Rule 6.5.5
Abbreviations MAY be used, but they SHOULD be avoided

Comments

Rule 6.5.6
Underscores (_), periods (.), and dashes (-) MUST NOT be used

Comments

Rule 6.5.7
Verbosity in tag size SHOULD be limited to what is required to conform to the tag net content recommendations

Comments

6.5.2
Tag Name Content

The following section defines guidance that should be followed for all new development of X12/XML tag names. This guidance is the “what” as opposed to the “how” of tag name formation. The section Tag Structure describes guidance on how to write a physical tag.

The following list of rules is taken from the United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT) Core Components Technical Specification, Part 1 12 October 2001 Version 1.6. A document created as follows-on work from the ebXML initiative and based on the ISO 11179 Part 5 – Naming and Identification Principles For Data Elements. The list originally described dictionary naming conventions and is modified here from its original version to accommodate XML tag naming.

The following tag naming conventions should be used in all new X12/XML schema creations.

Rule 6.5.8
Element, attribute and data type names MUST be unique

Comments

Rule 6.5.9
Element tag names SHOULD be extracted from existing ebXML or X12 data dictionaries where possible

Comments

Rule 6.5.10
High level parent element tag names SHOULD consist of a meaningful aggregate name followed by the term “Details”. The aggregate name may consist of more than one word (example <SiteFacilityDetail>

Comments

Rule 6.5.11
Lowest level (having no children) element tag names SHOULD consist of Object Class, the name of a Property Term and the name of a Representation Term (example <LocationSupplementalText>

Comments

Rule 6.5.12
Tag names SHOULD be concise and MUST NOT contain consecutive redundant words

Comments

Rule 6.5.13
The name of an Object Class refers to an activity or object within a business context. It MUST be unique throughout the tag dictionary and MAY consist of more than one word

Comments

Rule 6.5.14
The name of a Property Term MUST occur naturally in the tag definition and MAY consist of more than one word. A name of a Property Term MUST be unique within the context of an Object Class but MAY be reused across different Object Classes (example <LocationZipCode> and <MailingAddressZipCode> may both exist

Comments

Rule 6.5.15
If the name of the Property Term uses the same word as the Representation Term (or an equivalent word), this Property Term MUST be removed from the tag name. The Representation Term word in this case only will remain. (example: If the Object Class is Goods, the Property Term is Delivery Date, and the Representation Term is Date, the tag name is <GoodsDeliveryDate>

Comments

Rule 6.5.16
The name of the Representation Term MUST be one of the terms specified in the list of representation terms included in this annex

Comments

Rule 6.5.17
The name of the Representation Term MUST NOT be truncated in the tag name

Comments

Rule 6.5.18
A tag name and all its components MUST be in singular form unless the concept itself is plural (example: <Goods>)

Comments

Rule 6.5.19
Non-letter characters SHOULD only be used if required by language rules

Comments

Rule 6.5.20
Tag names SHOULD only contain verbs, nouns, and adjectives (i.e. no words like “and”, “of”, “the”, etc.)

6.5.3
Representation Types

Representation Term
Definition

Amount
A number of monetary units specified in a currency where the unit of currency is explicit or implied

Code
A character string (letters, figures, or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute. Codes usually are maintained in code lists per attribute type (e.g. colour)

Date
A day within a particular calendar year (ISO 8601

Date Time
A particular point in the progression of time (ISO 8601)

Graphic
A diagram, graph, mathematical curves, or similar representation

Identifier
A character string used to identify and distinguish uniquely, one instance of an object within an identification scheme from all other objects within the same scheme

Indicator
A list of two, and only two, values that indicate a condition such as on/off, true/false, yes/no etc. (synonym “Boolean”)

Measure
A numeric value determined by measuring an object. Measures are specified with a unit of measure. The applicable unit of measure is taken from UN/ECE Rec. 20.

Name
A word or phrase that constitutes the distinctive designation of a person, place, thing or concept

Percent
A rate expre4ssed in hundredths between two values that have the same unit of measure

Picture
A visual representation of a person, object, or scene

Quantity
A number of non-monetary units. It is associated with the indication of objects. Quantities need to be specified with a unit of quantity

Rate
A quantity or amount measured with respect to another measured quantity or amount, or a fixed or appropriate charge, cost or value e.g. US Dollars per hour, US Dollars per EURO, kilometre per litre, etc.

Text
A character string generally in the form of words of a language

Time
The time within a (not specified) day (ISO 8601)

Value
Numeric information that is assigned or is determined by calculation, counting or sequencing. It does not require a unit of quantity or a unit of measure

Annex A: Definitions

Document Entity
The root element for an X12/XML message consisting of one or more Aggregate Information Entities

Core Component Type
Core Components that have no business meaning on their own. When they are reused in a business context, they become Basic Information Entities. For example, quantity on its own has no business meaning, whereas the quantity shipped does have business meaning. Core Component Types consist of one component that carries the actual value (value component) plus others that give extra definition to the value (supplementary component(s)). For example, the value component 12 has no meaning on its own, but 12 kilometres or 12 Euros do have meaning

Core Component
Generic term that covers Core Component Type, Aggregate Information Entity and Basic Information Entity

Aggregate Information Entity
Defines a functional unit representation form that contains embedded information entities. An Aggregate Information Entity contains two or more Basic Information Entities or Aggregate Information Entities that together form a single business concept (e.g. postal address). Each Aggregate Information Entity has its own business semantic definition

Basic Information Entity
Defines a component which contains data but which does not have embedded information entities. A Basic Information Entity is a singular concept that has a unique business semantic definition. A Basic Information Entity adds semantic meaning to a single datatype or a Core Component Type (CCT).

Business Process Models
UML models that describe interoperable business processes that allow business partners to collaborate

Mixed Content
A combination of child elements and character data nested within an element

Enumeration
The practice of limiting the value space of an element or an attribute to a specific set of values

Named Types

Namesapces
An XML namespace is a collection of names identified by a URI reference which are used in XML documents as element types and attribute names

Globally defined elements

Locally defined elements

Globally defined attributes

Locally defined attributes

Element

Attribute

Wild cards

Groups

Substitution groups

Complex Type Definition
A complex type definition is a set of attribute declarations and a content type, applicable to the attributes and children of an element information item respectively. The content type may require the children to contain neither element nor character information items (that is, to be empty), to be a string which belongs to a particular simple type or to contain a sequence of element information items which conforms to a particular model group, with or without character information items as well.

Complex Type
Complex types which allow elements in their content and may carry attributes

Simple Type Definition
A simple type definition is a set of constraints on strings and information about the values they encode, applicable to the ·normalized value· of an attribute information item or of an element information item with no element children. Informally, it applies to the values of attributes and the text-only content of elements

Simple Type
Simple types cannot have element content and cannot carry attributes

Attribute groups

Model Group
A model group is a constraint in the form of a grammar fragment that applies to lists of element information items. It consists of a list of particles, i.e. element declarations, wildcards and model groups. There are three varieties of model group:

· Sequence (the element information items match the particles in sequential order);

· Conjunction (the element information items match the particles, in any order);

· Disjunction (the element information items match one of the particles).

Default attribute values

Fixed attribute values

Complex type abstractness

Complex type extension

Complex type restriction

Scoped keys

Multipart keys

Notations

Annotation
An annotation is information for human and/or mechanical consumers. The interpretation of such information is not defined in the XML Schema specifications

Uniqueness constraint

Processing instructions

Character set

Target namespace

Occurrence constraints

List types

Union types

Empty content

Empty element

Abstract elements and types

AnyElement

AnyAttribute

Type Redefinition

Type Derivation

XML Schema
An XML document that defines the allowable content of a class of XML documents. A class of documents refers to all possible permutations of structure in documents that will still confirm to the rules of the schema

Type Substitution
Allows a base type to be substituted by any derived type

Value Space
A value space is the set of values for a given datatype. Each value in the value space of a datatype is denoted by one or more literals in its lexical space.

Lexical Space
A lexical space is the set of valid literals for a datatype

Primitive Data Types
Primitive datatypes are those that are not defined in terms of other datatypes; they exist ab initio

Derived Data Types
Derived datatypes are those that are defined in terms of other datatypes. A datatype is said to be derived by restriction from another datatype when values for zero or more constraining facets are specified that serve to constrain its value space and/or its lexical space to a subset of those of its base type. Every datatype that is derived by restriction is defined in terms of an existing datatype, referred to as its base type. base types can be either primitive or derived

Built-in Datatypes
Built-in datatypes are those which are defined in this specification, and can be either primitive or derived

User-derived Datatypes
User-derived datatypes are those derived datatypes that are defined by individual schema designers

Element Declaration
An element declaration is an association of a name with a type definition, either simple or complex, an (optional) default value and a (possibly empty) set of identity-constraint definitions.

Attribute Declaration
An attribute declaration is an association between a name and a simple type definition, together with occurrence information and (optionally) a default value. The association is either global, or local to its containing complex type definition. Attribute declarations contribute to validation as part of complex type definition validation, when their occurrence, defaults and type components are checked against an attribute information item with a matching name and namespace

Notation Declaration
A notation declaration is an association between a name and an identifier for a notation. For an attribute information item to be valid with respect to a NOTATION simple type definition, its value must have been declared with a notation declaration

Wildcard
A wildcard is a special kind of particle which matches element and attribute information items dependent on their namespace name, independently of their local names

Model Group Definition
A model group definition is an association between a name and a model group, enabling re-use of the same model group in several complex type definitions

Attribute Group Definition
An attribute group definition is an association between a name and a set of attribute declarations, enabling re-use of the same set in several complex type definitions

Datatype
A datatype is a 3-tuple, consisting of a) a set of distinct values, called its value space, b) a set of lexical representations, called its lexical space, and c) a set of facets that characterize properties of the value space, individual values or lexical items.

Facet
A facet is a single defining aspect of a value space. Generally speaking, each facet characterizes a value space along independent axes or dimensions

Module Information Entity

Assembly Information Entity

Block Information Entity

Annex B: Notional X12/XML Message

<?xml version=”1.0” encoding=”UTF-8”?>

<DocumentEntity bpId=”nnnnnn” version=”nnnnnn”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema”

xsi:schemaLocation=

“http://www.TBD.org/DocumentName”

“http//:www.w3.org/X12_XML-SchemaDocumentName.xsd”>

<ModuleInformationEntity bpPurpose=”xxxxxx”>

<AssemblyInformationEntity>

<BlockInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

</BlockInformationEntity>

<BlockInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

</BlockInformationEntity>

</AssemblyInformationEntity>

<AssemblyInformationEntity>

<BlockInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

</BlockInformationEntity>

<BlockInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

</BlockInformationEntity>

</AssemblyInformationEntity>

</ModuleInformationEntity>

<ModuleInformationEntity bpPurpose=”xxxxxx”>

<AssemblyInformationEntity>

<BlockInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

</BlockInformationEntity>

<BlockInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

</BlockInformationEntity>

</AssemblyInformationEntity>

<AssemblyInformationEntity>

<BlockInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

</BlockInformationEntity>

<BlockInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

<BasicInformationEntity uid=”nnnnnn”>

…</BasicInformationEntity>

</BlockInformationEntity>

</AssemblyInformationEntity>

<AssemblyInformationEntity>

…

</ModuleInformationEntity>

…

</DocumentInformationEntity>

Annex C: Notional X12/XML Schema

Annex B: Message example document

Annex C: Schema example document

Annex D: A model of the message design process

Annex E: A model of the schema design process

1
2

_1050920721.ppt

Business document in a particular context

Document part in a particular context

Context

Component 2

Component 1

Aggregate

_1050920818.ppt

Business document in a particular context

Document part in a particular context

Context

Component 2

Component 1

Aggregate

…informs context...

…describes content...

…populates content...

Statement Of Intent

Document Schema, XML Samples

Requirements Documents

Analyze Business Process and

Business Information

Business Process Definition, Document Definition

Implement Service/ Application

Business Process Definition

Gather Require-ments

Develop Schemas

Statement Of Statement Of

Intent Intent

Document Document

Schema, XML Schema, XML

Samples Samples

Requirements Requirements

Documents Documents

Analyze Analyze

Business Business

Process and Process and

Business Business

Information Information

Business Process Business Process

Definition, Definition,

Document Definition Document Definition

Implement Implement

Service/ Service/

Application Application

Business Process Business Process

Definition Definition

Gather Gather

Require- Require-

ments ments

Develop Develop

Schemas Schemas

