Foreword

This is description of work-in-progress. This represents my effort to convey a snapshot for a great deal of hard work by a dedicated group of folks. Any errors in expressing the direction or detail of the effort are mine alone.

Peter D. Pruyne

Char, X12-C, Communications & Controls

Introduction

This is a preliminary overview. It is not meant as a complete or final description of the X12-C effort on design rules for XML. It primarily describes the architectural framework that will support the final Design Rules.

Design Rules come in two basic aspects, Syntactic & Semantic. An example of a syntactic design rule in X12 would be our basic data types, Alphanumeric, Date, etc). An example of a semantic design rule in X12 would be our general prohibition against duplication. These two aspects cannot stand-alone and provide much productive use.

Our existing Design Rules are a direct outgrowth of our particular syntax, and the history that created it. This effort built on our collective experience over the past 20 years and a hard look at what had gone well and what had become a burden over time.

Our past efforts at creating an XML style for EDI has convinced us that Semantics were the strong suit of X12’s collective experience, and that only by focusing on semantics First and Foremost could we offer a real constructive result.

In practical terms this meant providing a philosophical underpinning for the work. The semantic portion of our effort is nearing completion. The portion of the effort that is wholly syntactic is also nearly complete. This overview addresses the philosophical and semantic portions of the overall effort.

Architectural Framework

A semantic design approach has been chosen breaking the EDI lexicon into units for re-use. This approach some pitfalls that result from a decomposition of EDI issues using only syntax as a guide.

The large-scale structure of the architecture has 5 discrete levels of granularity. Each level builds on the levels below it in manners particular to their differing natures.

Template

Module

 Assembly

 Block

 Component

The first two, Template & Module provide features that promote interoperability between National Cross-Industry Standards and Proprietary user communities.

The remaining three have characters expressly designed around a rational semantic model for granularity.

Specification of Optionality & Repetition are supported for all the lower levels (excepting Templates). Specific attention has been paid to the differing needs of senders and receivers in expressing the use of optionality & repetition required by their particular business practices.

Use of a registry is assumed as part of this architecture. X12 would populate and maintain items in all 5-Levels through an approval process. Proprietary Module contributions would also be accepted, subject to verification of similarity of purpose. In addition to the separate items in the 5-levels of this architecture a registry would also certainly include full Message schemas constructed Top-to-Bottom that employ the

Furthermore, the registry would not only contain approved units, but also provide a variety of classification and search capabilities. These aspects are key to effective re-use and prevention of duplication. To quote our chief architect, “If you can’t find it, you can’t re-use it”.

It is also assumed that differing procedures for approval of the different levels of granularity will be considered as procedures are developed.

Structural Breakdown

Templates

· Each Template fulfils a Single business purpose

· A template is made up of a number of specific slots

· Each slot designates a specific purpose/function in the Template (e.g. Buyer/Seller/Shipper)

· Each slot is a placeholder for a single Module in use

· Each Slot May be filled by one of a set of Modules (e.g. Product Line Item .vs. Service Line Item)

· Similar to X12 Transaction Sets, but a one-to-one correspondence is not assumed

Modules

· Fulfils a specific purpose in a Template

· Each Modules answers a particular Semantic Question within the Business Process (e.g. Who/What/When/Where/Why)

· A Module MAY be used in a single Template

· A Module MAY be used in multiple Templates

· An X12 Module is constructed from one-or-more Assemblies

· A proprietary Module is considered a undivisible whole

Assembly

· Provides a way to aggregate one-or-more Blocks

· Simple peer aggregation is supported for basic grouping

· Hierarchical aggregation is supported to allow for complex relationships between Blocks

· Construction of Assemblies from other Assemblies has not been ruled in/out at this time

Block

· Describes a SINGLE Person/Place/Thing/Event

· Blocks are Semantically Oriented, but as a group Syntactically similar in form

· Blocks describe Identification and/or Characteristics

· Blocks are constructed of Components, generally more than one

· Blocks are NOT built from other Blocks

Component

· A Component is the smallest “chunk” of re-usable data in the architecture

· A Component May be a Single item (e.g. PartNumber, or LastName)

· A Component May be an aggregate of other Components (e.g. FirstName & MiddleItinitial & LastName)

· Each Component is an Identification or a Characterization data item

A Message built in this architecture can thus be described as “A Template containing specific Modules composed of Assemblies constructed from Blocks containing Components”.

The Importance of Granularity

The value proof of a standards approach is in the ease in which its structures are re-used and in the absence of duplication. Another test is intrinsic clarity, reflected in a minimal need for Implementation Guides.

The traditional Message/Segment/Element division employed in X12 and similar syntaxes has over time shown both strengths and weaknesses. The X12 standards have a high degree of re-use in segments and elements. But, the lack of a unit of standardization between the Transaction Set and the Segment has led to the proliferation of similar, but not quite alike, groups of Segments. This effect might be described as “Too much data, too little structure”.

The 5-layer structure of this architecture is designed to provide useful granularity, while at the same time preserving a useful semantic clarity.

The Single-ness of Blocks is an excellent case in point. We have X12 design rules roughly aiming at this, but with only Segments/Elements/Composites to work with, it has been hard to achieve or preserve over time. By employing a separate construct with the hard limitation of singleness, maintainability is greatly enhanced.

Many XML efforts have been plagued by an opposite issue, perhaps described by “Too much structure, too little restraint”. The basic nature of XML provides for constructing data hierarchy of any depth. This is clearly a useful trait, but without guidance its use can come to embody everything we ever did wrong in X12.

The catch phrase we have adopted in our pilot efforts with X12-F is “Constrained Variability”. The organization distinct

Granularity is NOT size. The different granularities embodied in the levels of this architecture are described and driven by Semantic considerations. While there is a rough correspondence, size is NOT the primary determinant. In general, Modules will be larger than Blocks, Blocks larger than Components. This is an effect of the Semantic distinctions that govern this architecture, not a cause for deciding what is a Module or a Block.

Classification Capabilities

Classification is key to encouraging re-use and avoiding duplication.

Families of Templates

· A number of messages that enable a complete business area

· Templates in a family share a high fraction of Modules

· Different Templates in a Family probably contain one or more Modules not present in other Templates in the family.

· Examples

· The Materials Management messages

· The Purchasing Cycle messages

Sets of Related Templates

· A number of message that fulfil variations on a general Business Purpose

· Related Templates probably differ in only one or two modules

· Related Templates each contain a subset of Modules used by the overall set of Templates

· Examples

· Invoice’s (Account .vs. Event, or either Payment-Enabled)

· ASN’s

Modules

· Many Template-Slots will be satisfied by one of a set of Modules

· This one-of-an-exclusive-set nature is not re-useable (e.g. a ServiceLineItem Module might appear with ProductLineItem in an Invoice Template, but ServiceLineItem would not appear in an ASN Template)

· Modules satisfying the same Semantic Question (e.g. “Where?”)

· The usual “Used-in” & “Contains” associations

Assemblies

· By aggregation types (e.g. Simple or Hierarchical)

· The usual “Used-In” & “Contains” associations

Blocks

· Blocks describing the same kind of item (e.g. Person, Place, etc)

· The usual “Used-In” & “Contains” associations

Components

· Division into Identification or Characterization classes

· Usage by particular kinds of Blocks (e.g. all Components used to Identify a Person)

· The usual “Used-In” & “Contains” associations

Division of Approval

We have had some discussions on how best to manage the division of responsibility and how approval processes might be structured. This has not been our main focus, but we have agreed that the various barriers to new .vs. modify activity in our existing process have not always been a help. In fact, we are pretty convinced that they have led to both duplication and inappropriate combinations of un-like semantic things. Both of which this architecture seeks to avoid.

The general consensus is that this is something we should only offer recommendations on, as J has the real battle scars in this area, and thus should take this on. However here are some thoughts.

Templates

· Many similarities to how Transaction Sets are managed in X12 syntax

· Tightly managed

· Strong justification of a new&different underlying business process required

· “Ownership” by lettered Sub-Committee

· A “Full-Ballot” item

Modules

· Candidates for a “looser” management philosophy

· Possibly owned & managed by single/joint lettered subcommittees

· TAS “at-meeting” approval of changes

Assemblies

· Relatively new level in the overall architecture, no discussion so far

Blocks

· Tight management

· Owned by X12-J

· Perhaps full ballot for new ones, “At meeting” J approval for modifications

Components

· Tight management

· Owned by J

· “Dam well better make your case” for new ones

· Perhaps the “Code-Add” process for list-items

In general we liked the thrust of the proposed “Code-Add” process, and would sure like some of that speed and ease for non-controversial changes.

Support for Proprietary Efforts

A primary requirement for this effort has been to meet a need first expressed at the first XML-Summit. This was a desire for Non-X12 participants to contribute and make use of our work, but in a manner that didn’t require an all-or-nothing commitment to either our process or our conclusions on every detail.

The two top layers, Templates & Modules, directly support this need.

An external entity, corporate/organization/individual, can contribute fully constructed Modules that fit into a Template. We presume that differences in detail within a module might reflect unique business needs of the contributor.

The level of conformance applied to these contributions would be two-fold. First “does it meet the function & purpose” expressed for a particular slot in a Template. Second does it conform to the purely syntactic design rules we establish?

A “cross-industry usefulness” test would NOT be applied. A test “duplication of existing item” would NOT be applied. Adherence to our philosophical structuring of the bottom three layers (Assembly/Block/Component) would NOT be required.

A good example of our expected use would be ProductLineItem as used in Invoice or PurchaseOrder. A contributor could use such a proprietary module, in combination with other Standard Modules in a Standard Template. Such a user would gain the benefit of our efforts in the specific business area.

This support encourages increased participation in our activities, but also a good path for enlargement and improvement of our developed items.

Some XML Syntax Decisions

· W3C Schema selected for describing XML data Structures

· XML Elements shall be used for ALL business Data

· XML Attributes shall be used for ALL metadata

· Upper Camel-Case shall be used for XML Element Tags

· Lower Camel-Case shall be used for XML Attribute Names

· Schema Should be oriented toward data-interchange, as opposed to presentation

· Schema Should use named data types

Relationship To other XML efforts

· Since most other XML efforts lack an overriding Semantic organization, many efforts may be amenable to adoption to varying degrees.

· Some XML efforts have been directed to production of “Bullet” messages. This effort is directly applicaible by narrow definition of the Business Purpose underlying each Template

· In particular, the ebXML efforts have componentry definitions with instances that span several levels described here. The architecture proposed here provides a structured mechanism to impose a Semantic discipline in this arena.

· Several efforts have modeling as a primary tenet. Modeling may prove to be the best way to develop items the top Levels of this architecture (Certainly Templates & Modules, perhaps Assemblies). We feel this architecture allows modeling to be used at high levels, where it is most effective.

