
GraX : Graph Exchange Format

Jürgen Ebert Bernt Kullbach Andreas Winter

University of Koblenz-Landau
Institute for Software Technology

Rheinau 1, D-56075 Koblenz, Germany
✆ ++49 262 287-2722|2704|2764

(ebert|kullbach|winter)@uni-koblenz.de

Abstract

This paper introduces theGraX graph exchange format that can be used by software engineering
tools. The data to be transferred are separated into a schema and an instance part which are both
exchanged in the same way. The application ofGraX as a vehicle for tool interoperability will be
exemplified in the context of CASE and software reengineering tools.

Keywords: exchange format, XML, CASE tool interoperability, reengineering tool interoperability,
graph technology

1 Motivation

To enable interoperability between tools supporting various tasks in software engineering a suitable
mechanism for interchanging data between those tools is required. Several data exchange formats have
been developed to exchange models of software systems and information systems on various levels of
abstraction (for CASE1 tools see e. g. CDIF [7, 8] and XMI [11] and for CARE1 tools see e. g. ASFIX
[12], RSF [16], and TA [9]).

Due to the heterogeneity of the subject domain of different tools there is evidence that data to be in-
terchanged can not be mapped to a general metaschema [8]. As a consequence a common interchange
format enabling tool interoperability in software engineering has to support the exchange ofinstance
dataandschema data[3].

Here, theGraX (graph exchange) format [3] is proposed as an interchange format, which allows ex-
changing instance and schema datain the same way. GraX is formally based onTGraphs [1, 6] which
define a very general class of graphs. As notationGraX uses the markup language XML [13].

This paper is organized as follows: Section 2 introduces theGraX exchange format for representing
graphs on the instance level as well as on the schema level. In section 3 the application ofGraX in tool
interoperability is sketched. The paper ends with a conclusion in section 4.

2 GraX

Data representations in CASE and CARE tools are usually based on data structures like relations, syntax
trees or graphs. To enable data interchange between tools a common data format has to be chosen. This
either has to enclose all of the these data structures or it else has to allow an easy mapping between
them. A common kind of data structure which can be matched to all of the above structures is given
by TGraphs. TGraphs aredirectedgraphs, whose vertices and edges aretypedandattributed. Within
TGraphs edges are viewed as first class entities. While being treated independently from vertices, edges
can be traversed along and against their direction. To express sequences of edges or verticesTGraphs

1CASE = computer-aided software engineering; CARE = computer-aided reengineering

are additionallyordered. Furthermore,TGraphs are scalable with respect to the application context in
the sense, that not all properties ofTGraphs have to be used to their full extent.

SinceTGraphs are a purely structural means for modeling, their meaning depends on the application
context in which they are exchanged. This context determines which vertex and edge types, which at-
tributes and which incidence relations are modeled.Conceptual modeling techniquesusing extended
entity-relationship diagrams or class diagrams are used to define classes ofTGraphs representing this
application-related knowledge. Here, entity types and relationship types are used to specify vertex types
and edge types together with their attribute and incidence structures. Multiple generalization is allowed
for vertex and edge types. Further structural information can be modeled by using aggregation. Ad-
ditional constraints, e. g. degree constraints or restrictions to relational graphs or dags are specified by
graphical annotations or by textual constraints. To describe the schema part of the data to be inter-
changed, we propose theEER/GRAL-approach to graph-based, conceptual modeling [6], which is suited
to TGraphs.

So, theinstance data structuressupported by theGraX interchange format areTGraphs and the accord-
ing schematic information is given byEER/GRAL conceptual models. Thus, in aconcrete notationthe
underlying conceptual model, the vertices and edges including their type and attribute information, the
incidence relationships and the ordering of vertices and edges have to be described. Figure 1 shows the
XML document type definition(DTD) supplying such a notation. This DTD reflects the formal specifi-
cation ofTGraphs as defined in [1].

<!ELEMENT grax (vertex | edge)* >

<!ATTLIST grax
schema CDATA #REQUIRED >

<!ELEMENT vertex (attr)* >
<!ATTLIST vertex

id ID #REQUIRED
type CDATA #IMPLIED
lambda IDREFS #IMPLIED >

<!ELEMENT edge (attr)* >
<!ATTLIST edge

id ID #REQUIRED
type CDATA #IMPLIED
alpha IDREF #REQUIRED
omega IDREF #REQUIRED >

<!ELEMENT attr EMPTY >
<!ATTLIST attr

name CDATA #REQUIRED
value CDATA #REQUIRED >

Figure 1: XML document type definition forTGraphs (grax.dtd)

Figure 2a shows a small graph with vertices of typesA, B , andC and edges of typer and s. The
numbers associated to the edges model the ordering of these edges with regards to their incident ver-
tices. This graph is represented by the associatedGraX document in figure 2b. The first lines of this
XML document refer to the underlying XML version and to theGraX DTD. This intitial information
is followed by the graph definition enclosed by<grax> and</grax> tags. Within the<grax> tag a
reference to the graph schema (example.scx) is specified. Vertices and edges are represented asvertex
andedge elements, respectively, which include key and type identifiers as XML attributes. Vertex and
edge attributes are given by associating identifiers and values throughattr-elements. The global ordering
of vertices and edges is given by their textual position. The local ordering of edges with respect to a
vertex is specified by edge sequences in thelambda-attribute of vertices within the correspondingvertex
tag. Finally, incidences including the orientation of edges are described byalpha andomega attributes
of edge elements.

The schema information of graphs like the one in figure 2a is specified in figure 2c. In the entity rela-
tionship (EER) diagram vertex typesA, B , andC and edge typesr ands including their attribute and
incidence structure are defined.

SinceEER-diagrams likewise are structured information they may also be represented asTGraphs. The
metaschemadescribing the graph structure of thoseEER-TGraphs is introduced in [3]. This meta-

Av1

aAttr = "a"

Bv6

aAttr = "bbb"
bAttr = 27

Av3

aAttr = "abc"

Cv4

Cv5

Av2

aAttr = "abc"

e1:s

e2:s

e3:s

e5:s

e4:rrAttr = 42

12

3

1

vertex edge

edgeId

edgeType
vertexId

vertexType

vertexAttribute

edgeAttribute

edgeOrdering

a) TGraph b) TGraph as GraX document

<?xml version=”1.0” ?>

<!DOCTYPE grax SYSTEM ”grax.1.0.dtd” >

<grax schema = ”example.scx” >

<vertex id = ”v1” type = ”A” >

<attr name = ”aAttr” value = ”a”/>
</vertex>

. . .
<vertex id = ”v4” type = ”C”

lambda = ”e5 e2 e1” >

</vertex>

. . .
<edge id = ”e4” type = ”r”

alpha = ”v5” omega = ”v6” >

<attr name = ”rAttr” value = ”42” />
</edge>

. . .
</grax>

vertex

edge

vertexId vertexType

edgeId edgeType

vertex
Attribute

edgeAttribute

incidences

GraphSchema

edgeOrdering

EntityTypev2

name = "A"

Attributev1

name = "aAttr"

Domainv5

name = "string"

EntityTypev6

name = "B"

v3

name = "s"

Relationship
Type

v7

name = "r"

Relationship
Type

EntityTypev4

name = "C"

Attributev8

name = "bAttr"

Attributev10

name = "rAttr"

Domainv9

name = "int"

e1: hasAttribute

e2:
hasDomain

e3: hasDomain

e4: hasDomain

e5 :
 hasAttribute

e6: hasAttribute

e7: isA

e8:
comesFrom

e9:
goesTo

e10:
goesTo

e11:
comesFrom

limits = (1,*) limits = (0,1)

limits = (1,1) limits = (1,1)

<?xml version=”1.0” ?>

<!DOCTYPE grax SYSTEM ”grax.1.0.dtd” >

<grax schema = ”meta.1.0.scx” >

<vertex id = ”v1” type = ”Attribute” >

<attr name = ”name” value = ”aAttr”/>
</vertex>

<vertex id = ”v2” type = ”EntityType” >

<attr name = ”name” value = ”A”/>
</vertex>

<vertex id = ”v3” type = ”RelationshipType” >

<attr name = ”name” value = ”s”/>
</vertex>

. . .
<edge id = ”e7” type = ”isA”

alpha = ”v6” omega = ”v2” >

</edge>

<edge id = ”e8” type = ”comesFrom”
alpha = ”v3” omega = ”v2” >

<attr name = ”limits” value = ”(1,*)” />
</edge>

<edge id = ”e9” type = ”goesTo”
alpha = ”v3” omega = ”v4” >

<attr name = ”limits” value = ”(1,1)” />
</edge>

. . .
</grax>

c) graph class representation
 as conceptual Model

d) graph class representation
 as TGraph

e) graph class representation
 as GraX document

bAttr : int

B

C

s

r
rAttr : int

1 .. *

1 1

0 .. 1

aAttr : string

A

Figure 2:GraX example: instance and schema information

schema is another conceptual model that specifiesentity types, relationship types, attributesanddomains
andassociationsbetween them on the meta level. TheTGraph in figure 2d matches the metaschema
specification and is equivalent to the conceptual model in figure 2c. So both schema and instance data
can be represented asGraX documents. In figure 2 the dataGraX (cf. figure 2b) refers to its individual
schemaexample.scx while the schemaGraX (cf. figure 2e) refers to theGraX metaschemameta.1.0.scx.

Due to its capability to represent not only instance data but also schema data,GraX is not restricted to
fixed application domains but offers anextensibleandadaptableinterchange format. FurthermoreGraX
is homogeneousin that it uniformly represents instance data and schema data byTGraphs. Using XML
as a concrete notation,GraX documents are based on auniversal standard. Translations into theGraX
format produce representations that arelinear in sizeto the length of the source code. The translation
into usual internal representations used in CASE and CARE tools and vice versa, can be done inlinear
time with respect to the document size. To support individual development of filters translatingGraX
documents into other representations, a generic parser has been developed in Java. Semantic actions for
processing vertices, edges and attributes and for doing some pre- and postprocessing are encapsulated in
an interface. Only these semantic actions have to be implemented according the desired target format.

3 Applications in Software Engineering

GraX can be applied as a general means of tool interoperability. As examples these aspects will be
discussed in the context of our metaCASE and metaCARE toolsKOGGE [4] andGUPRO [2].

3.1 CASE tools

Modeling software and information systems requires methodological assistance. In this context various
structured and object-oriented methods and techniques have been developed during the last decades (as
an overview cf. [14, 15]). CASE tools offer support for modeling software and information systems
according to these methods. Due to the large variety of modeling methods and techniques, CASE-tool
interoperability has to cope with innumerable modeling languages in several dialects that are based on
different modeling concepts and focus on various views on software systems. As to the state of CASE
tool interoperability, it seems impossible to define a common metaschema for all modeling methods and
techniques [8, 15]. Accordingly, interoperability of CASE tools requires the exchange ofmodelstogether
with theschemathat describes the concepts used in the modeling method. Both of these models can be
represented byGraX documents.

Within the metaCASE-toolKOGGE (Koblenz generator for graphical environments) [5]TGraphs are
used for describing models and schemas as well.GraX is used as a means for exporting and importing
these Graphs. AsKOGGE is a metaCASE tool, there exists aKOGGE tool which assist in creating
schemas.GraX versions of these schemas are used to derive concrete CASE tools, e. g. for modeling
with SA, BON, or with parts of UML.

3.2 CARE tools

Tools in software reengineering have to cope with various programming languages in single language
and in multi language environments. The granularity of source code representations depends on the con-
crete reengineering tasks. These may vary in a wide spectrum of abstraction between very detailed code
representation (e. g. for data and control flow analysis) and coarse-grained code representations (e. g.
for architectural understanding or structural code analysis). Current tools in software reengineering
mostly focus on single reengineering techniques like code extraction and parsing, architecture recovery,
data flow analysis, pointer analysis, program slicing, source code queries, source code visualization etc.
To combine these tools to form a more global and continuous software reengineering methodology, a
suitable interchange mechanism is required that connects the different tools. These tools use their own
representations of source code following the various needs of the underlying approaches. Analogously to
CASE tool interoperability, a common reengineering metaschema covering all concepts used in reengi-
neering tools seems impossible to build [3]. As a consequence, an interchange format for reengineering
data has to includeschema informationrepresenting the tool relevant reengineering concepts besides the
instance informationdescribing the source code. Again, instance information and their corresponding
schema information can be represented byGraX documents.

The GUPRO metaCARE tool [2] provides an adaptable software analysis environment.TGraphs are
used for the internal representation of source code andGUPRO tools are customized by conceptual
models specifying the application domain (e. g. [10]). Both, program graphs and conceptual models, can
be imported and exported byGraX documents. In a case study on interoperability we are currently trans-
ferring a large C++ system represented in a relational database into itsGraX equivalent. The database
representation has been created by a third party and we will apply our generic code analysis facilities to
this system.

4 Conclusion

In this paper theGraX graph exchange format was presented as an adaptable and flexible means support-
ing tool interoperability between CASE and CARE tools. The flexibility ofGraX is given by interchang-
ing schema and instance information in the same manner. Discussing tool interoperability withGraX can
be restricted to defining the conceptual models used by the interoperable tools and the interoperability
context representing the subset of data to be interchanged. This interoperability context is specified in
the schema part of the data to be exchanged. A more detailed introduction intoGraX as an interchange
format for reengineering tools can be found in [3].

References

[1] J. Ebert and A. Franzke. A Declarative Approach to Graph Based Modeling. InE. Mayr et al.: Graphtheo-
retic Concepts in Computer Science, LNCS 903, Springer, Berlin, pages 38–50. 1995.

[2] J. Ebert, R. Gimnich, H. H. Stasch, and A. Winter, editors.GUPRO — Generische Umgebung zum Pro-
grammverstehen. Fölbach, Koblenz, 1998.

[3] J. Ebert, B. Kullbach, and A. Winter. GraX – An Interchange Format for Reengineering Tools. InSixth
Working Conference on Reverse Engineering (WCRE 1999), IEEE Computer Society, Los Alamitos, pages
89–98. 1999.

[4] J. Ebert, R. S¨uttenbach, and I. Uhe. Meta-CASE in Practice: A Case for KOGGE. InA. Olivé, J. A.
Pastor: Advanced Information Systems Engineering, 9th international Conference, CAiSE’97, LNCS 1250,
Springer:Berlin, pages 203–216. 1997.

[5] J. Ebert, R. S¨uttenbach, and I. Uhe. JKogge: A Component-Based Approach for Tools in the Internet. In
STJA 99, 5. Fachkonferenz Smalltalk und Java in Industrie und Ausbildung. 1999.

[6] J. Ebert, A. Winter, P. Dahm, A. Franzke, and R. S¨uttenbach. Graph Based Modeling and Implementation
with EER/GRAL. InB. Thalheim: Conceptual Modeling — ER’96, LNCS 1157, Springer, Berlin, pages
163–178. 1996.

[7] CDIF Transfer Format, Transfer Format Encoding ENCODING.1.http://www.eigroup.org/
cdif/how-to-obtain-standards.html EIA/IS-110, Electronic Industries Association, Arling-
ton, January 1994.

[8] J. Ernst. Introduction to CDIF.http://www.eigroup.org/cdif/intro.html , September 1997.

[9] R. Holt. An Introduction to TA: The Tuple-Attribute Language.http://plg.uwaterloo.ca/
∼holt/papers/ta.html , 1997.

[10] B. Kullbach, A. Winter, P. Dahm, and J. Ebert. Program Comprehension in Multi-Language Systems. In
Fifth Working Conference on Reverse Engineering, (WCRE’98), IEEE Computer Society, Los Alamitos,
pages 135–143. 1998.

[11] XML Metadata Interchange (XMI). OMG Document ad/98-10-05ftp://ftp.omg.org/pub/docs/
ad/98-10-05.pdf , October 1998.

[12] M. van den Brand, P. Klint, and P. A. Olivier. Compilation and memory management for ASF+SDF.
Technical Report SEN-R9906, CWI - Centrum voor Wiskunde en Informatica, Feb. 28, 1999.

[13] Extensible Markup Language (XML) 1.0. W3c recommendation, W3C XML Working Group,
http://www.w3.org/ TR/1998/REC/xml/19900210 , February 1998.

[14] R. J. Wieringa. A Survey of Structured and Object-Oriented Software Specification Methods and Tech-
niques.ACM Computing Surveys, 30(4):459–527, December 1998.

[15] A. Winter. Ein Referenz-Metaschema der Beschreibungsmittel f¨ur Organisationen und Softwaresysteme.
PHD thesis, 2000.

[16] K. Wong. RIGI User’s Manual, Version 5.4.4.http://www.rigi.csc.uvic.ca/rigi/rigi
frame1.shtml?Download , June 1998.

