GraX: Graph Exchange Format
Jurgen Ebert Bernt Kullbach ~ Andreas Winter

University of Koblenz-Landau
Institute for Software Technology
Rheinau 1, D-56075 Koblenz, Germany
O ++49 262 287-27227042764
(ebertkullbachwinter)@uni-koblenz.de

Abstract

This paper introduces thérax graph exchange format that can be used by software engineering
tools. The data to be transferred are separated into a schema and an instance part which are both
exchanged in the same way. The applicatiorGedX as a vehicle for tool interoperability will be
exemplified in the context of CASE and software reengineering tools.

Keywords: exchange format, XML, CASE tool interoperability, reengineering tool interoperability,
graph technology

1 Motivation

To enable interoperability between tools supporting various tasks in software engineering a suitable
mechanism for interchanging data between those tools is required. Several data exchange formats have
been developed to exchange models of software systems and information systems on various levels of
abstraction (for CASEtools see e. g. CDIF [7, 8] and XMI [11] and for CARBbols see e.g. ASFIX

[12], RSF [16], and TA [9]).

Due to the heterogeneity of the subject domain of different tools there is evidence that data to be in-
terchanged can not be mapped to a general metaschema [8]. As a consequence a common interchange
format enabling tool interoperability in software engineering has to support the exchanggtaoice
dataandschema dat3].

Here, theGraX (graph exchange) format [3] is proposed as an interchange format, which allows ex-
changing instance and schema datthe same wayGraX is formally based ormGraphs [1, 6] which
define a very general class of graphs. As notatieanX uses the markup language XML [13].

This paper is organized as follows: Section 2 introduces@heX exchange format for representing
graphs on the instance level as well as on the schema level. In section 3 the applic&iaX af tool
interoperability is sketched. The paper ends with a conclusion in section 4.

2 GraX

Data representations in CASE and CARE tools are usually based on data structures like relations, syntax
trees or graphs. To enable data interchange between tools a common data format has to be chosen. This
either has to enclose all of the these data structures or it else has to allow an easy mapping between
them. A common kind of data structure which can be matched to all of the above structures is given
by TGraphs. TGraphs aredirectedgraphs, whose vertices and edgestgpedandattributed Within

TGraphs edges are viewed as first class entities. While being treated independently from vertices, edges
can be traversed along and against their direction. To express sequences of edges oImGHires

1CASE = computer-aided software engineering; CARE = computer-aided reengineering

are additionallyordered Furthermore TGraphs are scalable with respect to the application context in
the sense, that not all properties@sraphs have to be used to their full extent.

Since TGraphs are a purely structural means for modeling, their meaning depends on the application
context in which they are exchanged. This context determines which vertex and edge types, which at-
tributes and which incidence relations are model€bnceptual modeling techniquesing extended
entity-relationship diagrams or class diagrams are used to define class6saphs representing this
application-related knowledge. Here, entity types and relationship types are used to specify vertex types
and edge types together with their attribute and incidence structures. Multiple generalization is allowed
for vertex and edge types. Further structural information can be modeled by using aggregation. Ad-
ditional constraints, e. g. degree constraints or restrictions to relational graphs or dags are specified by
graphical annotations or by textual constraints. To describe the schema part of the data to be inter-
changed, we propose tii#E=R/GRAL-approach to graph-based, conceptual modeling [6], which is suited

to TGraphs.

So, theinstance data structuresupported by th&rax interchange format aréGraphs and the accord-
ing schematic information is given l§¥ER/GRAL conceptual models. Thus, incancrete notatiornthe
underlying conceptual model, the vertices and edges including their type and attribute information, the
incidence relationships and the ordering of vertices and edges have to be described. Figure 1 shows the
XML document type definitigfip TD) supplying such a notation. This DTD reflects the formal specifi-
cation of TGraphs as defined in [1].
<IELEMENT edge (attr)* >
<IATTLIST edge

id ID #REQUIRED

type CDATA #IMPLIED

alpha IDREF #REQUIRED
omega IDREF #REQUIRED >

<IELEMENT grax (vertex | edge)* >

<IATTLIST grax
schema CDATA #REQUIRED >

<IELEMENT vertex (attr)* >
<IATTLIST vertex
id ID #REQUIRED
type CDATA #IMPLIED
lambda IDREFS #IMPLIED >

<IELEMENT attr EMPTY >
<IATTLIST attr
name CDATA #REQUIRED
value CDATA #REQUIRED >

Figure 1. XML document type definition fofGraphs (grax.dtd)

Figure 2a shows a small graph with vertices of typesB, and C' and edges of type ands. The
numbers associated to the edges model the ordering of these edges with regards to their incident ver-
tices. This graph is represented by the associg@X document in figure 2b. The first lines of this
XML document refer to the underlying XML version and to tBeaX DTD. This intitial information

is followed by the graph definition enclosed bygrax> and </grax> tags. Within the<grax> tag a
reference to the graph schenemgmple.scx) is specified. Vertices and edges are representedraes
andedge elements, respectively, which include key and type identifiers as XML attributes. Vertex and
edge attributes are given by associating identifiers and values thatugtements. The global ordering

of vertices and edges is given by their textual position. The local ordering of edges with respect to a
vertex is specified by edge sequences indh#da-attribute of vertices within the correspondiveytex

tag. Finally, incidences including the orientation of edges are describelbiryy andomega attributes

of edge elements.

The schema information of graphs like the one in figure 2a is specified in figure 2c. In the entity rela-
tionship (EER) diagram vertex typesl, B, and C' and edge types ands including their attribute and
incidence structure are defined.

SinceEER-diagrams likewise are structured information they may also be represent&iashs. The
metaschemalescribing the graph structure of thoBER-TGraphs is introduced in [3]. This meta-

<?xml version="1.0" ?>
<IDOCTYPE grax SYSTEM "grax.1.0.dtd” >

vertex T A edge <grax schema = "example.scx” >
els <vertex id = "v1” type = "A” > raphSchema
aAttr = "a" <attr name = "aAttr” value = "a"/>
- t
vertexId vertex </vertex> “_vertex vertexType
vertexType edgeType ve:rlt_exld ~ Attribute
v2| A edgeld / 6| B <vertex id = "v4” type = "C"
s dgeOrderi lambda = "e5 e2 el” >
e eOrderin = " =
anwrzuaner [¢ ¢ a/;;:'m_:b;; <Ivertex> ~— edgeOrdering
edgeAttribute edgeld edgeType
. 4 . a incidences
vertexAttribute @A) <edge id = "e4” type = "r
edge alpha = "v5” omega = "v6" >
aAttr = "abc” <attr name = "rAttr” value = "42" />
- </edge>
cee edgeAttribute
</grax>
a) TGraph b) TGraph as GraX document

<?xml version="1.0" 7>

Auribue) €2 (v <IDOCTYPE grax SYSTEM "grax.1.0.dtd” >
name = "aAttr" > <grax schema = "meta.1.0.scx” >

name = sting <vertex id = "v1" type = "Attribute” >

4 ”, ” ” i
A A <attr name = "name” value = "aAttr"/>
</vertex>
el: hasAttribute . - " N »
aAur : string <vertex id = "v2” type = "EntityType” >
1% <attr name = "name” value = "A"/>
EntityType v6 | EntityType e5: v8 <Ivertex>
e7:isA hasAttribute o o . . N
name = v | @ name = "B" B ame = At <vertex id = "v3” type = "RelationshipType” >
<attr name = "name” value = "s"/>
Y A <Ivertex>
S - limits = (1,%) - limits = (0,1) €3: hasDomain e) X
A 4 T comesFrom goesTo <edge id ="e7” type = "isA”
@] , v alpha = "v6” omega = "v2” >
A </edge>
<edge id = "e8” type = "comesFrom”
. alpha = "v3” omega = "v2" >

<attr name = "limits” value = "(1,*)" />
(limits = (1,2) e4: hasDomain </edge>
c <edge id = "e9” type = "goesTo”
alpha ="v3” omega = "v4" >

<attr name = "limits” value = "(1,1)" />
</edge>
</grax>
c) graph class representation d) graph class representation e) graph class representation
as conceptual Model as TGraph as GraX document

Figure 2:GraX example: instance and schema information

schema is another conceptual model that spe@hésy typesrelationship typesattributesanddomains
andassociationdetween them on the meta level. Th€&raph in figure 2d matches the metaschema
specification and is equivalent to the conceptual model in figure 2c. So both schema and instance data
can be represented @saX documents. In figure 2 the dat@aX (cf. figure 2b) refers to its individual
schemaxample.scx while the schem@raXx (cf. figure 2e) refers to th6raX metaschemmeta.1.0.scx.

Due to its capability to represent not only instance data but also schemaGdaXais not restricted to

fixed application domains but offers artensibleandadaptableinterchange format. FurthermoGrax

is homogeneous that it uniformly represents instance data and schema dat&kaphs. Using XML

as a concrete notatiograX documents are based omuaiversal standard Translations into th&rax

format produce representations that knear in sizeto the length of the source code. The translation

into usual internal representations used in CASE and CARE tools and vice versa, can beloh&as in

time with respect to the document size. To support individual development of filters transtatixg
documents into other representations, a generic parser has been developed in Java. Semantic actions for
processing vertices, edges and attributes and for doing some pre- and postprocessing are encapsulated in
an interface. Only these semantic actions have to be implemented according the desired target format.

3 Applications in Software Engineering

GraX can be applied as a general means of tool interoperability. As examples these aspects will be
discussed in the context of our metaCASE and metaCARE @GGE [4] and GUPRO [2].

3.1 CASE tools

Modeling software and information systems requires methodological assistance. In this context various
structured and object-oriented methods and techniques have been developed during the last decades (as
an overview cf. [14, 15]). CASE tools offer support for modeling software and information systems
according to these methods. Due to the large variety of modeling methods and techniques, CASE-tool
interoperability has to cope with innumerable modeling languages in several dialects that are based on
different modeling concepts and focus on various views on software systems. As to the state of CASE
tool interoperability, it seems impossible to define a common metaschema for all modeling methods and
techniques [8, 15]. Accordingly, interoperability of CASE tools requires the exchamgeddlsogether

with theschemahat describes the concepts used in the modeling method. Both of these models can be
represented bgraX documents.

Within the metaCASE-tooKOGGE (Koblenz generator for graphical environments) J®}raphs are

used for describing models and schemas as v@#X is used as a means for exporting and importing
these Graphs. AKOGGE is a metaCASE tool, there existskiDGGE tool which assist in creating
schemas.GraX versions of these schemas are used to derive concrete CASE tools, e. g. for modeling
with SA, BON, or with parts of UML.

3.2 CARE tools

Tools in software reengineering have to cope with various programming languages in single language
and in multi language environments. The granularity of source code representations depends on the con-
crete reengineering tasks. These may vary in a wide spectrum of abstraction between very detailed code
representation (e. g. for data and control flow analysis) and coarse-grained code representations (e. g.
for architectural understanding or structural code analysis). Current tools in software reengineering
mostly focus on single reengineering techniques like code extraction and parsing, architecture recovery,
data flow analysis, pointer analysis, program slicing, source code queries, source code visualization etc.
To combine these tools to form a more global and continuous software reengineering methodology, a
suitable interchange mechanism is required that connects the different tools. These tools use their own
representations of source code following the various needs of the underlying approaches. Analogously to
CASE tool interoperability, a common reengineering metaschema covering all concepts used in reengi-
neering tools seems impossible to build [3]. As a consequence, an interchange format for reengineering
data has to includechema informatiorepresenting the tool relevant reengineering concepts besides the
instance informatiordescribing the source code. Again, instance information and their corresponding
schema information can be represented3nyXx documents.

The GUPRO metaCARE tool [2] provides an adaptable software analysis environnTedraphs are

used for the internal representation of source code @O&RO tools are customized by conceptual
models specifying the application domain (e. g. [10]). Both, program graphs and conceptual models, can
be imported and exported [@raX documents. In a case study on interoperability we are currently trans-
ferring a large C++ system represented in a relational database ir@eaitsequivalent. The database
representation has been created by a third party and we will apply our generic code analysis facilities to
this system.

4 Conclusion

In this paper th&sraX graph exchange format was presented as an adaptable and flexible means support-
ing tool interoperability between CASE and CARE tools. The flexibilityzaéX is given by interchang-

ing schema and instance information in the same manner. Discussing tool interoperabil@yaxtban

be restricted to defining the conceptual models used by the interoperable tools and the interoperability
context representing the subset of data to be interchanged. This interoperability context is specified in
the schema part of the data to be exchanged. A more detailed introductiaBvé&tXaas an interchange
format for reengineering tools can be found in [3].

References

[1] J. Ebert and A. Franzke. A Declarative Approach to Graph Based Modelirg. Mbayr et al.: Graphtheo-
retic Concepts in Computer Science, LNCS 903, Springer, Bediges 38-50. 1995.

[2] J. Ebert, R. Gimnich, H. H. Stasch, and A. Winter, edito@UPRO — Generische Umgebung zum Pro-
grammverstehenF6lbach, Koblenz, 1998.

[3] J. Ebert, B. Kullbach, and A. Winter. GraX — An Interchange Format for Reengineering ToolSixtim
Working Conference on Reverse Engineering (WCRE 1999), IEEE Computer Society, Los Afzagiss
89-98. 1999.

[4] J. Ebert, R. 8ttenbach, and I. Uhe. Meta-CASE in Practice: A Case for KOGGEA.I®Iive, J. A.
Pastor: Advanced Information Systems Engineering, 9th international Conference, CAISE'97, LNCS 1250,
Springer:Berlin pages 203—-216. 1997.

[5] J. Ebert, R. 8ttenbach, and I. Uhe. JKogge: A Component-Based Approach for Tools in the Internet. In
STJA 99, 5. Fachkonferenz Smalltalk und Java in Industrie und Ausbild98§.

[6] J. Ebert, A. Winter, P. Dahm, A. Franzke, and Ritt8iibach. Graph Based Modeling and Implementation
with EER/GRAL. InB. Thalheim: Conceptual Modeling — ER’96, LNCS 1157, Springer, Bgréiges
163-178. 1996.

[7] CDIF Transfer Format, Transfer Format Encoding ENCODINGhitp://www.eigroup.org/
cdif/how-to-obtain-standards.html EIA/IS-110, Electronic Industries Association, Arling-
ton, January 1994.

[8] J. Ernst. Introduction to CDIFhttp://www.eigroup.org/cdif/intro.html , September 1997.

[9] R. Holt. An Introduction to TA: The Tuple-Attribute Languagehttp://plg.uwaterloo.ca/
~holt/papers/ta.html , 1997.

[10] B. Kullbach, A. Winter, P. Dahm, and J. Ebert. Program Comprehension in Multi-Language Systems. In
Fifth Working Conference on Reverse Engineering, (WCRE’'98), IEEE Computer Society, Los Alamitos
pages 135-143. 1998.

[11] XML Metadata Interchange (XMI). OMG Document ad/98-10{€%//ftp.omg.org/pub/docs/
ad/98-10-05.pdf , October 1998.

[12] M. van den Brand, P. Klint, and P. A. Olivier. Compilation and memory management for ASF+SDF.
Technical Report SEN-R9906, CWI - Centrum voor Wiskunde en Informatica, Feb. 28, 1999.

[13] Extensible Markup Language (XML) 1.0. W3c recommendation, W3C XML Working Group,
http://lwww.w3.org/ TR/1998/REC/xml/19900210 , February 1998.

[14] R. J. Wieringa. A Survey of Structured and Object-Oriented Software Specification Methods and Tech-
nigues.ACM Computing Survey80(4):459-527, December 1998.

[15] A. Winter. Ein Referenz-Metaschema der BeschreibungsmitteDfganisationen und Softwaresysteme.
PHD thesis, 2000.

[16] K. Wong. RIGI User's Manual, Version 5.4.4http://www.rigi.csc.uvic.ca/rigi/rigi
framel.shtml?Download ,June 1998.

