
Unicode: What is it and how do I use it?

Tony Graham
Senior Consultant

Mulberry Technologies, Inc.

17 West Jefferson Street, Suite 207

Rockville, MD 20850 U.S.A.

phone: 301/315-9631

email: info@mulberrytech.com

http://www.mulberrytech.com

Abstract: The rationale for Unicode and its design goals and detailed design
principles are presented. The correspondence between Unicode and ISO/IEC
10646 is discussed, the scripts included or planned for inclusion in the two
character set standards are listed. Some products that support Unicode and
some applications that require Unicode are listed, then examples of how to
specify Unicode characters in a variety of applications are given. Use of
Unicode in SGML and XML applications is discussed, and the paper
concludes with descriptions of the character encodings used with Unicode and
ISO/IEC 10646 plus sources of further information are listed.

Keywords: Unicode; ISO/IEC 10646; UTF-8; UTF-16; UCS.

1. What is Unicode?

Unicode is a character encoding standard published
by, of all people, the Unicode Consortium. Unicode is
designed to include all of the major scripts of the world
in a simple and consistent manner. The Unicode
standard also defines properties of the characters and
algorithms for use in Unicode implementations.

Existing character encodings are a mixture of one-
byte and two-byte encodingsÐChinese, Japanese, and
Korean encodings need two bytes per character, and
most other coded character sets use only one byte per
character. Most coded character sets are more or less
compatible with ASCII for the first 127 character
numbers, but above that it's anybody's game. Changes
between character encodings are signalled by escape
sequences embedded in the text stream, so to
determine the encoding, and in some cases to
determine how many bytes to read as a single
character, you need to process the entire text stream
up to that point. The net result is that one transmission
error or one misstep in applying encoding-translation
software can garble an entire document.

Unicode was born from frustration by software
manufacturers with the fragmented, complicated, and
contradictory character encodings in use around the
world. The technical difficulties of dealing with
different coded character sets meant that software
had to be extensively localized before being released
into different markets, which meant that the `̀ other
language'' versions of software could be significantly
delayed and also be signficantly different internally
because of the character handling requirements. Not
surprisingly, the same character handling changes had
to be regrafted onto each new version of the base

software before it could be released into other markets.
Of course the character encoding is not the only aspect
to be changed when localizing software, but it is a large
component, and it is the aspect most likely to have a
custom solution for each new language.

The Unicode work began in the late 1980s, and the
Unicode Consortium was incorporated as Unicode,
Inc. in 1991. Today the Consortium's members include
many major software and hardware manufacturers
plus. The current version of the Unicode Standard is
version 2.1. Version 2.1 is issued as a Technical Report
that lists additions and corrections from version 2.0 of
the Standard. That document is available as a 950-
page book that defines Unicode and lists every
character with an example glyph. As an example of
the problems of handling the world's scripts, in order
to display every glyph, the book required specialized
formatting software from five different companies.

The Unicode Standard defines a fixed-width 16-bit,
uniform encoding scheme for written characters and
text. The standard defines 38,887 distinct coded
characters that includes characters for the major
scripts of the world, as well as technical symbols in
common use. The Unicode Standard is also code-for-
code identical with ISO/IEC 10646-1:1993, although it
does define more semantics for characters than does
ISO/IEC 10646. The Unicode Technical Committee
has a liaison membership with the ISO/IEC Working
Group responsible for computer character sets.

2. Unicode Design Goals

The original design goals of the Unicode Standard
were:

MARKUP TECHNOLOGIES '98 171



Universal The repertoire had to be large
enough to encompass all characters
likely to be used in general text
interchange.

Efficient Plain text, composed of a sequence
of fixed width characters, is simple
to parse, and software does not
need to maintain state, look for
special escape sequences, or search
forward or backward through text
to identify characters.

Uniform A fixed-length character code al-
lows efficient sorting, searching,
display, and editing of text.

Unambiguous Any given 16-bit value always
represents the same character.

3. Unicode Design Principles

Building on the design goals, the design of the
Unicode Standard reflects the following ten design
principles.

Sixteen-Bit Characters

All Unicode character codes are a uniform 16 bits.
For compatibility with existing computer systems that
can't handle 16-bit characters, the Unicode Standard
defines the UTF-8 and UTF-7 formats for lossless
transformation between Unicode characters and 8-bit
and 7-bit character sequences, respectively.

Full Encoding

Using 16-bit characters allows over 65,000 code
positions that can be assigned to characters. This far
exceeds the expected requirements for all modern and
most archaic languages. As of Unicode 2.1, there are
still over 18,000 unassigned code positions.

Characters, Not Glyphs

Unicode is concerned with characters, not glyphs.
Characters are the smallest component of a written
language, and glyphs are the representation of the
written or displayed character. There is often a one-to-
many or many-to-one relationship between characters
and glyphs. Even in English, there are many different
glyphs that can represent a single character (Figure 1),
fonts that contain many glyphs for the same character
(Figure 2), and in high-quality typesetting, single-glyph
ligatures used for sequences of, for example, `̀ f'' and
`̀ i'' or `̀ f'' and `̀ l'' characters (Figure 3).

Semantics

The Standard provides well-defined semantics for
each character, including numeric, spacing, combina-
tion, and directionality properties.

The specification of these semantics is not included
in ISO/IEC 10646, and the writers of the Unicode
Standard see this as a major feature of Unicode over
ISO/IEC 10646.

Plain Text

Plain Unicode is a sequence of character codes.
Unicode does not currently define any codes for
specifying language, font, etc., although there are
character codes that provide hints about directionality
of the text.

In Unicode terms, SGML and XML are `̀ fancy
text'' or `̀ higher-level protocols'' since their markup

Figure 1. Will the real `̀ a'' please step forward?

Figure 2. Ampersands

Figure 3. `̀ ffi'' and `̀ ffi''ligature

Tony Graham

172 MARKUP TECHNOLOGIES '98



represents additional data structures interspersed in
the stream of plain Unicode characters.

The `̀ plain text'' nature of Unicode is set to change
since a recent Unicode Technical Report [TR7 98]
proposes the addition of language tags using char-
acters on Plane 14 of ISO/IEC 10646. Since the
language tags cannot be confused for textual content,
parsing for them is, in theory, easier, than, say, using
SGML or XML, and they are seen as a lighter-weight
mechanism for specifying language.

Logical Order

Characters are stored in their logical order: in the
sequence in which they are read, which is not always
the sequence in which they are displayed. For example,
Arabic and Hebrew are read right-to-left. Since the
logical start of the right-to-left text is the character
closest to the right margin, that character is the first
character in the Unicode character stream, as shown in
Figure 4.
The characters' directionality properties, and use of
character codes specifying changes in direction when
mixing characters of different dominant direction,
provide sufficient information for correct rendering of
the text.

In addition, the Unicode Standard specifies that
combining marks always follow their base character.
In contrast, existing encodings are not standardized,
and some require the combining characters before the
base character and some after.

Unification

Unicode unifies characters within scripts across
languages so that characters with equivalent form are
given a single code. For example, common letters,
punctuation marks, symbols, and diacritics were each
given one code. In addition, over 120,000 ideographs
used in Chinese, Japanese, and Korean were unified to
20,902 character codes.

The exceptions are `̀ compatibility characters'' that
could have been unified but remained as separate code
positions, often in support of round-trip mapping
between Unicode and an existing code set. For
example, ISO 8859-1 includes the character `̀ OÈ '', and
Unicode includes `̀ O'' and `̀ È '' plus `̀ OÈ '' as a
compatibility character even though `̀ OÈ '' could be

remapped to the two-character sequence without loss
of information.

Han Unification: The Downside

The downside of the unification process is that a
`̀ Unicode'' font would use the same glyph for the same
character number, not matter what glyph variations
existed for the `̀ un-unified'' forms of the character. At
best, this leads to homogenized fonts that use generic
representations of the characters and please no-one,
and at worst this leads to the occasional `̀ wrong''
character when the font uses the wrong glyph variant
for a user' locale.

Figure 5 shows a small portion of a Simplified
Chinese web page using three different fonts. Note
how the Unicode font and the two Simplified Chinese
fonts have differences that are visible even to the non-
reader of Chinese.

Extra information can be added to the document,
using the proposed language tags or a `̀ higher-level
protocol'' such as XML markup and the xml:lang
attribute, to specify the correct language and/or locale
for the text, and this can be used to key the selection of
fonts for representing the characters, but this leads to
more complex software and detracts from the `̀ Char-
acters, not Glyphs'' design principle.

Dynamic Composition

We have already seen `̀ O'' and `̀ È '' as an example of
a base plus a combining character. Instead of allowing
just `̀ well-known'' accented characters such `̀ OÈ '',
Unicode allows dynamic composition of accented
forms where any base character plus any combining
character (or sequence of combining characters) can
make an accented form.

Equivalent Sequence

Since some character may be represented in
precomposed or dynamically composed forms, the
Unicode Standard defines equivalent sequences for
each precomposed form. Since sequences of combining
characters can follow a base character, the Standard

Figure 5. Sample text with Unicode and Simplified Chinese fonts

Figure 4. Bidirectional Ordering

Unicode: What is it and how do I use it?

MARKUP TECHNOLOGIES '98 173



also defines a canonical ordering for combining
characters.

Note that the Unicode Standard does not prescribe
one particular internal representation of composed
characters or one particular sequence of combining
characters. Systems may choose to normalize Unicode
text to one particular representation, and the W3C
work on `̀ Requirements for String Identity Matching
and String Indexing'' may standardize that for the
entire Web, but in Unicode all sequences of characters
are permitted.

Convertibility

Round-trip conversion between Unicode and many
pre-existing standards is possible since each character
has a unique correspondence with a sequence of one or
more Unicode characters. When a base standard
includes multiple variant forms of a single character,
the variants are not unified so there will always be a
mapping between Unicode and the base standard.

While accurate convertibility is guaranteed, many
conversions require a mapping table since the corre-
sponding Unicode characters may not be in the same
sequence as in the base standard or a base standard
character may map to a sequence of Unicode
characters.

Guaranteeing convertibility has required compro-
mises such as the inclusion of many compatibility
characters but this does mean that Unicode can
become a replacement or alternative for these pre-
existing standards. It also means that an application
can read or write using a pre-existing coded character
set but be `̀ Unicode inside''.

4. Unicode and ISO/IEC 10646

The Unicode Standard is code-for-code compatible
with ISO/IEC 10646-1:1993, Information Technology
± Universal Multiple-Octet Coded Character Set
(UCS) ± Part 1: Architecture and Basic Multilingual
Plane.

ISO/IEC 10646 is a four-octect (32-bit) coded
character set, although it currently only specifies
characters in the Basic Multilingual Plane (BMP),
and these can be represented with 16-bit characters.
The BMP includes characters in general use in
alphabetic, syllabic, and ideographic scripts together
with various symbols and digits. ISO/IEC 10646
specifies the names and coded representation of these
graphic characters. In addition, two coded representa-
tions are specified: UCS-4, the four-octet (32-bit) form
of the UCS, and UCS-2, the two-octet (16-bit) BMP
form of the UCS.

In ISO/IEC 10646 terms, the BMP is `̀ Plane 00 of
Group 00''. Characters outside the BMP will require
more than 16 bits for their coded representations.
Although there are proposals for assignments in Plane
01, the ISO/IEC Working Group has not begun the
formal process of creating Plane 01.

Timeline

The Unicode Standard and ISO/IEC 10646 began
as independent efforts. They merged in 1992, and
today the Unicode Technical Committee and the ISO/
IEC Working Group operate in parallel.

1989 DP 10646 published, independent of Unicode

1990 Unicode 1.0 published

1990 DIS-1 10646, independent of Unicode

1991 Unicode and ISO 10646 agree to merge

1992 Unicode 1.0.1, modified for merger

1992 DIS-2 10646, merged with Unicode

1993 IS 10646-1:1993, merged standard

1993 Unicode 1.1, revised to match 10646-1:1993

1995 10646 amendments

1996 Unicode 2.0, revised to cover amendments

1998 Unicode 2.1, corrected errors, added euro

Unicode's Extra Semantics

To ISO/IEC 10646, the Unicode Standard is a
`̀ profile'' that implements certain portions of ISO/IEC
10646. In particular, Unicode supports only the BMP,
uses the UTF-16 coded representation (or UCS-2 if no
surrogates1 are used), and counts as `̀ implementation
level 3'' since it includes both combining marks and
precomposed characters.

To Unicode, ISO/IEC 10646 is a superset of the
Unicode Standard since it can include more characters
than can Unicode. However, the Unicode Standard
defines additional character semantics beyond those
defined in ISO/IEC 10646, which the Unicode
Standard stresses as the major difference between the
two standards.

In ISO/IEC 10646, the character name is the main
resource for character semantics and cross-mapping
between standards. The character names are identical
in the Unicode Standard, but that Standard adds or
includes alias names, usage annotations, character
properties, conformance specifications, and tables of
explicit mappings between the Unicode Standard and
pre-existing standards.

1. Four-byte sequences used to represent characters outside the
BMP.

Tony Graham

174 MARKUP TECHNOLOGIES '98



5. What in the World is Included?

Fulfilling the goal of including the major scripts of
the world, the Unicode Standard and ISO/IEC 10646
currently support the following:

Primary Scripts

. Arabic

. Armenian

. Bengali

. Bopomofo

. Cyrillic

. Devanagari

. Georgian

. Greek

. Gujarati

. Gurmkhi

. Han

. Hangul

. Hebrew

. Hiragana

. Kannada

. Katakana

. Latin

. Lao

. Malayalam

. Oriya

. Phonetic

. Tamil

. Telugu

. Thai

. Tibetan

Secondary Scripts

. Numbers

. General Diacritics

. General Punctuation

. General Symbols

. Mathematical Symbols

. Technical Symbols

. Dingbats

. Arrows, Blocks, Box Drawing Forms, and
Geometric Shapes

. Miscellaneous Symbols

. Presentation Forms

What's in the Works?

Planned or proposed scripts from around the world
(and out of this world) include:

. Ethiopic

. Cherokee

. Canadian Syllabics

. Runic

. Ogham

. Braille Pattern Symbols

. Yi

. Sinhala

. Thaana

. Khmer

. Burmese

. Syriac

. Western Musical Symbols

. Byzantine Musical Symbols

. Deseret Alphabet

. Shavian

. Etruscan

. Gothic

. Linear B

. Cypriot Syllabary

. Mongolian

. Cham

. Tai (Dai) scripts

. Glagolitic

. Coptic

. Buginese

. Old Hungarian Runic

. Phoenician

. Avestan

. Phillipine Scripts

. Basic Egyptian Hieroglyphics

. Meriotic

. Old Persian Cuneiform

. Ugaritic Cuneiform

. Tifinagh

. Tengwar

. Cirth

. tlhingan Hol (Klingon)

. Brahmi

. Javanese

. Old Permic

. Sinaitic

. South Arabian

. Pollard

6. Is it a Universal Character Set?

As we have seen, the Unicode Standard and ISO/
IEC 10646 do support a multitude of scripts, but their
estimated success or failure in representing the major
scripts of the world varies depending on whose opinion
you ask. To the majority of Japanese, the answer is a
resounding `̀ No'', largely because of dissatisfaction
with the Han unification process that merged Japanese
ideographs with those of Chinese and Korean.

Unicode: What is it and how do I use it?

MARKUP TECHNOLOGIES '98 175



Unicode supports many base standards as they
existed in 1993, but the field of language is not static,
and new characters are continually being created.
According to [Huang and Huang 89], the Chinese are
inventing many new characters each year, and it
remains to be seen how well new characters are added
to the repertoire.

In addition, Unicode does not yet support some
modern scripts, although some unsupported scripts are
for languages that are commonly written with other,
supported scripts. While Unicode also doesn't support
many archaic and obsolete scripts, several of these are
proposed for future inclusion.

7. Who Uses Unicode or ISO/IEC
10646?

Both the list of software that supports Unicode and
the list of applications that require Unicode support
are continually growing. On the software side, this
includes:

. Java

. MacOS

. Windows NT

. Windows 95 (partial)

. AIX

. Plan 9

. NetWare 4.0

. QuickDraw GX

. Jade

. nsgmls and some other SGML parsers

. XML applications

Applications that require Unicode support include:

. XML

. HTML 4.0

. Java

8. How do I specify `̀V''?

The character set may be standardized, but a
character's representation in programs and data still
varies with the application. Table 1 shows some of the
ways that the `̀V'' character is represented.

Table 1 How do I specify V

Standard or Appli-
cation

Representation Comment

Unicode U+0416 An individual Unicode value is expressed as U+nnnn, where nnnn is
the character's number expressed in hexadecimal notation.

CYRILLIC CAPITAL LETTER ZHE All Unicode characters have unique names, which are the same as
those in the English language version of ISO/IEC 10646. Names
contain only the uppercase letters A to Z, space, hyphen-minus, and
occasionally digits. As this table shows, this makes it easy to generate
computer-sensible identifiers for individual characters.

ISO/IEC 10646 0000 0416 UCS-4

0416 UCS-2

CYRILLIC CAPITAL LETTER ZHE ISO/IEC 10646 assigns a unique name to each character.

Java \u0416 Java defines a special Unicode escape sequence for representing the
hexadecimal value of a Unicode character.

Pre-TC SGML &#1046; Prior to the WebSGML Adaptations TC, SGML allowed only
decimal numeric character references.

XML and
WebSGML Adapta-
tions SGML

&#1046; XML, and SGML after the WebSGML Adaptations TC, allows both
decimal and hexadecimal numeric character references. The numeric
references do not contain a `̀ u'' or otherwise signal that `̀ this is
Unicode'' since they are references to character numbers in the
document character set and, in principle, any single-byte or multi-byte
coded character set could be used in an SGML application.

&#x416;

SGML Declaration 1046 Decimal character numbers only may be used.

&#1046; Decimal numeric character references may be used in minimum
literals

DSSSL #\cyrillic-capital-letter-zhe; Characters may be referenced by an identifier derived from the
character name.

#\U-0416 Jade also supports of the form `̀U-'' plus the hexadecimal character
number.

Tony Graham

176 MARKUP TECHNOLOGIES '98



9. How do I use Unicode with SGML?

After the fundamental step of selecting SGML
software that supports Unicode, you can then refer-
ence ISO/IEC 10646 as the BASESET in the CHAR-
SET declaration in your SGML Declaration. The
following CHARSET declaration is taken from the
SGML Declaration for XML:
CHARSET

BASESET
"ISO Registration Number 176//CHARSET ISO/IEC

10646-1:1993 UCS-2 with implementation level

3//ESC 2/5 2/15 4/5"

DESCSET 0 9 UNUSED
9 2 9

11 2 UNUSED

13 1 13

14 18 UNUSED
32 95 32

127 1 UNUSED

128 32 UNUSED

160 65376 160

10. How do I use Unicode with XML?

All XML processors are required to support both
the UTF-8 and UTF-16 encodings of Unicode
characters. XML processors may also support other
encodings, and the XML Recommendation lists some
of them, but an XML document or parsed entity that
is not in either UTF-8 or UTF-16 must begin with an
XML Declaration or text declaration that specifies the
encoding, for example, <?xml encoding="EUC-
JP"?>.

To distinguish between the two encodings that do
not need an encoding declaration, parsed entities in the
UTF-16 encoding must begin with the Byte-Order
Mark (BOM). The BOM is used in Unicode systems as
a signature for detecting the sequence of bytes in each
16-bit character. When the first two bytes in the parsed
entity are FE16 and FF16, then the bytes are in the
correct order for the processor, and when the first two
bytes are FF16 and FE16, the byte pairs need to be
transposed before interpretation as Unicode charac-
ters. The BOM is unnecessary for UTF-8, the 8-bit
encoding of Unicode characters, so its presence is used
in XML systems to indicate the UTF-16 encoding.

XML parsed entities may use any legal graphic
character specified in the Unicode Standard and ISO/
IEC 10646. Any Unicode character that is not allowed
in the current encoding may be included by a numeric
reference to that character's number in the ISO/IEC
10646 repertoire. Once characters outside the Basic
Multilingual Plane become part of ISO/IEC 10646,
Unicode systems will be able to reference the
characters using a two-character sequence called a

`̀ Surrogate Pair''. The code positions for the blocks of
Surrogate Pair characters are not valid XML character
numbers, so references to characters outside the BMP
will be made by numeric references to their ISO/IEC
10646 character number, not by pairs of numeric
references to the corresponding Unicode Surrogate
Pair character codes.

As stated previously, one of Unicode's design
principles is `̀ Equivalent Sequence'' between precom-
posed characters and their canonical or compatibility
decompositions. By default, however, XML does not
consider that precomposed characters and their
compatibility decompositions are equal in string
comparisons. The XML recommendation does state
that `̀ at user option, processors may normalize such
characters to some canonical form'', but a quick survey
doesn't show any XML parsers implementing this user
option.

For example, according to the Unicode standard,
LATIN SMALL LETTER O + COMBINING
DIAERESIS (o + È ) and LATIN SMALL LETTER
O WITH DIAERISIS (oÈ ) are canonical equivalents,
but if they were used as the name in an element's start-
tag and end-tag, respectively, this would cause an error
because they are not equivalent according to the XML
recommendation (Figure 6).

This is more likely to happen, however, if the two
occurrences of the name or string were in two different
entities, such as a document and its DTD, created
using different editors that output different, but
canonically-equivalent under Unicode, character se-
quences for the same text.

It remains to be seen whether the forthcoming W3C
work on string identity matching obviates this
difference from Unicode before it becomes a problem
for XML.

Figure 6. Canonical equivalents are not equivalent to XML

Unicode: What is it and how do I use it?

MARKUP TECHNOLOGIES '98 177



11. Can I use ISO Entities with
Unicode?

Annex D of ISO 8879 declared several sets of
general entities, and these have been in wide use over
the last twelve years. ISO TR 9573 superseded Annex
D and declared more sets of general entities.

Despite this longevity and comparatively wide-
spread use, Unicode and ISO/IEC 10646 do not
include characters for all of the ISO entities. If you
want to stay with the official character repertoire,
XML-compatible versions prepared by Rick Jelliffe of
several ISO entity sets are available at http://
www.altheim.com/specs/charents.html.

The W3C Mathematical Markup Language
(MathML) effort needed all of the ISO TR 9573
entities and more besides, so the MathML recommen-
dation [MathML 98] defines characters for the
additional entities and, for now, standardizes character
numbers for these characters in the user-defined area
of Unicode and ISO/IEC 10646. The recommendation
states that the `̀ STIX project of the STIPUB group of
scientific and technical publishers'' is working both on
making available a complete set of fonts for Unicode
characters for science and technology and on propos-
ing inclusion of these characters in Unicode and ISO/
IEC 10646. The STIPUB Consortium, working
through the American Mathematical Society, sub-
mitted a proposal for additional math symbols and
technical symbols to the ISO/IEC working group in
March 1998 [WGReg 98], but additional math symbols
and technical symbols are not currently listed among
Unicode's proposed scripts [Prop 98].

Details of the characters, including lists organized
by entity name and by Unicode character number, are
available at [MathML 98]. The entities are not
declared in the MathML DTD [MathML DTD], but
SGML-compatible versions of the entity sets are
available at [Carlisle 98].

Since the character numbers for these additional
characters are in the user-defined area, it is best to take
the advice of the MathML recommendation and refer
to these characters by entity name only, as the
character numbers will change if the characters are
officially included in Unicode and ISO/IEC 10646.

12. What are the Unicode and ISO/
IEC 10646 Coded Representations?

The Unicode Standard and ISO/IEC 10646 share a
bewildering variety of coded representations for the
same characters. The following sections will help in
deciphering the acronyms.

UCS-4 ± Four-Octet (32-bit) Canonical Form of the
UCS

UCS-4 is the four-byte representation of characters
in ISO/IEC 10646. It is not used in the Unicode
Standard, and it is unnecessary in that Standard, since
the Unicode Standard specifies a uniform, fixed-width
16-bit coded character set.

UCS-2 ± Two-Octet (16-bit) BMP Form of the UCS

UCS-2 is the two-byte representation of characters
defined in ISO/IEC 10646, but Unicode is compatible
with UCS-2.

UTF-7 ± UCS Transformation Format, 7-Bit Form

UTF-7 is defined in IETF RFC 1642, and is
summarized in an Appendix to the Unicode Standard
2.0, but it is not part of ISO/IEC 10646. UTF-7 is a 7-
bit form that is safe for use with email, Simple Mail
Transport Protocol (SMTP), and Multimedia Internet
Mail Extensions (MIME). Each 16-bit Unicode
character is encoded as between 1 and 22

3 7-bit
characters.

UTF-8 ± UCS Transformation Format, 8-Bit Form

UTF-8 is common to both the Unicode Standard
and ISO/IEC 10646, and all XML processors are
required to support this format. Originally developed
by X/Open to enable use of Unicode character data in
8-bit Unix environments, this transformation format
was known as File System Safe UTF (FSS-UTF) and
as UTF-2 before being renamed UTF-8 and included
as a normative addendum to ISO/IEC 10646.

UTF-8 encodes each Unicode character as one, two,
or three bytes (and UCS-4 characters as up to six
bytes). All of the ASCII code values are represented as
a single byte, most non-ideographic characters are
represented as two-byte sequences, and the remaining
Unicode characters are represented as three-byte
sequences. Once characters outside the BMP are
defined, the Surrogate Pair codes that Unicode uses
to represent these characters will be represented as
four-byte sequences

UTF-8 is a simple and efficient conversion and a
reasonably compact encoding, and it is compatible
with ASCII since the ASCII characters map to the
same coded representation in UTF-8. However, many
Japanese, for example, do not like UTF-8 since their
files become bigger when the current double-byte
characters are converted to three bytes of UTF-8.

UTF-16 ± UCS Transformation Format for Planes of
Group 00

UTF-16 is an ISO/IEC 10646 encoding that is
equivalent to the Unicode Standard with the use of

Tony Graham

178 MARKUP TECHNOLOGIES '98



surrogates. The only difference between UCS-2 and
UTF-16 is the use of surrogates with UTF-16.
However, while XML specifies support for UTF-16,
and UTF-16 includes the code points for surrogate
pair characters, the character numbers for the code
points in the surrogate blocks are not legal XML
character numbers. Surrogate pairs in a UTF-16
document will be refer to a non-UCS-2 character,
but numeric character references to a character
number in the surrogate blocks are not legal XML.

Use of code points in the surrogate blocks, or the S
(Special) Zone of the BMP as it is called in ISO/IEC
10646, enables addressing of characters in planes
1. . .1610 of group 0 of UCS-4; that is, it allows
addressing of over one million additional UCS-4 code
values in the range 00010000. . .0010FFFF16.

Which is best for me?

There is no single, simple answer to this question.
The choice of encoding will depend in part upon your
language and in part upon the tools that you are using.
For example, if you are working in English, it is
simplest to use UTF-8 since UTF-8 is a superset of
ASCII, but if you are working in Japanese, it would be
preferable to use UTF-16, since using UTF-8 would
result in larger files. However, if you working with
Perl, the latest version of which handles Unicode
characters as UTF-8 internally, it might be simplest to
only use UTF-8 for input and output.

13. Further Information

Definitive information on the Unicode Standard is
available from the Unicode Consortium at http://
www.unicode.org, and the Unicode Concept Diction-
ary, a useful glossary of Unicode terms, is available at
http://cns-web.bu.edu/pub/djohnson/web_files/i18n/
unicode.html.

Information on ISO/IEC 10646 is available at
http://www.dkuug.dk/jtc1/sc2/wg2/, and the ISO/IEC
10646 Concept Dictionary is available at http://cns-
web.bu.edu/pub/djohnson/web_files/i18n/ISO-
10646.html.

Bibliography

[Carlisle 98] Carlisle, David, MathML Files: DSSSL
style sheet for MathML, http://www.nag.co.uk/
projects/OpenMath/mml-files/

[Huang and Huang 89] Huang, Jack K. T., and
Timothy D. Huang. 1989. An Introduction to
Chinese, Japanese, and Korean Computing. Singa-
pore: World Scientific

[MathML 98] Mathematical Markup Language,
Chapter 6, Entities, Characters, and Fonts, http://
www.w3.org/TR/REC-MathML/chapter6.html

[MathML DTD] Mathematical Markup Language,
Appendix A, The MathML DTD , http://
www.w3.org/TR/REC-MathML/appendixA.html

[Prop 98] Unicode Consortium, Proposed New Scripts,
http://www.unicode.org/pending/pending.html

[TR7 98] Unicode Consortium, Technical Report #7,
Plane 14 Characters for Language Tags, http://
www.unicode.org/unicode/reports/tr7.html

[WGReg 98] ISO/IEC JTC 1/SC 2/WG 2, N1750,
Partial Document Register (N1600 - N1810) +
standing documents, http://wwwold.dkuug.dk/
JTC1/SC2/WG2/docs/documents

Biography

Tony Graham has been working with SGML for over
seven years. He has worked as an Editor and a
Document Analyst with Uniscope, Inc. in Tokyo,
Japan for four years, and as an SGML Consultant
with ATLIS Consulting Group, and he is currently a
Consultant with Mulberry Technologies, Inc., a
Consultancy specializing in SGML and XML training
and design. Tony has designed, built, and tested DTDs
and SGML applications for clients in the academic
publishing, aerospace, automotive, database publish-
ing, electronic component, photocopier, and software
industries, and the languages used in these systems
have been English, Japanese, Chinese, and Korean. In
addition, his contributions have been incorporated
into the DocBook, J2008, and Pinnacles SGML
application standards.

Tony is also a qualified Electrical Engineer, and he
has written programs in everything from FORTRAN
on mainframes to programs in custom languages on
embedded microcontrollers. Within this range is
included SGML processing programs in DSSSL,
XSL, Perl, Tcl, C, and Scheme.

Unicode: What is it and how do I use it?

MARKUP TECHNOLOGIES '98 179


