
Everything You Ever Wanted to Know About DTDs,

But Were Afraid to Ask

(extended abstract)

Arnaud Sahuguet

sahuguet@saul.cis.upenn.edu

University of Pennsylvania

1 Introduction

For the last two years, XML has become an increas-

ingly popular data-format embraced by a lot of d-

i�erent communities. XML is extremely attractive

because it o�ers a simple, intuitive and uniform text-

based syntax and is extensible. One can �nd today

XML proposals for messages, text content delivery

and presentation, data content, documents, software

components, scienti�c data, real-estate ads, �nancial

products, cooking recipes, etc.

Unfortunately this also means that XML is far too

general and if people plan to use it in serious applica-

tions (mainly for Electronic Document Interchange,

in a broad sense), they will need to provide a spec-

i�cation (i.e. structure, constraints, etc.) for their

XML, which XML itself cannot o�er.

In order to specify and enforce this structure, people

have been using Document Type De�nitions (DTDs),

inherited from SGML.

In this paper, we present some preliminary results

that explore how DTDs are being used for specifying

the structure of XML documents. By looking at some

publicly available DTDs, we look at how people are

actually (mis)using DTDs, show some shortcomings,

list some requirements and discuss possible replace-

ments.

But before getting further, let us ask the following

legitimate question: why bother?. And to answer it,

let us review what DTDs should be good for.

Historically, DTDs have been invented for SGML.

The purpose of a DTD is to permit "to determine

whether the mark-up for an individual document is

correct and also to supply the mark-up that is missing

because it can be inferred unambiguously from other

mark-up present" [ISO 8879].

The two historical functions of DTDs have been pars-

ing and validation. The parsing function is less rele-

vant with XML (since XML does not permit to omit

tags). The validation still plays { and will play { an

important role: once an XML document has been val-

idated it can be directly processed by the application.

It is crucial to keep in mind that XML documents ex-

ist without DTDs: an XML document is well-formed

if its tag structure is correct, and valid (against a

DTD) if moreover it complies with this DTD.

However, with the advent of XML as the data-format

for both text and data content, DTDs are promised

to be used in a broader scope.

From a database perspective [1] for instance, DTDs

can be useful to trigger optimizations for XML query

languages. For instance some structural knowledge

about an XML document permits to resolve path-

expressions with wild-cards and perform both hori-

zontal and vertical optimization ([11, 5, 13]). This

role of DTDs is similar to dataguides [6].

More recently, some research about eÆcient stor-

age [4] and compression [12] of XML showed that

some information about the structure of the docu-

ment can dramatically improve performance. For in-

stance, knowing that an attribute can have a �nite

number of values permits to encode it more eÆcient-

ly using a dictionary.

DTDs can also be extremely useful as meta-

information about the document they describe.

The rest of this paper is organized as follows. We

�rst give a brief overview of XML DTDs (Section 2).

In Section 3, we explain the methodology of our sur-

vey and present some preliminary results about how

DTDs are being misused to specify the structure of

XML documents. In Section 4 we explain what we

think is wrong with the current DTDs and what they

should o�er. In Section 5, we look at some replace-

ments that have been proposed. In Section 6, we

present some future directions of research before we

o�er some conclusions.

1

2 DTDs in a nutshell

We brie
y describe the structure of a DTD, which

can consists of the following items listed below.

Elements represent the tag names that can be used

in the document. Element declarations are intro-

duced using <!ELEMENT >. Elements can contain sub-

elements or be empty. Elements can have some at-

tributes. The structure of sub-elements is de�ned

via a content-model built out of operators applied

to sub-elements. Elements can be grouped as se-

quences (a,b) or as choices (a|b). For every element

or group of elements, the content-model can speci-

fy its occurrence by using regular expression opera-

tors (?,*,+). There are also some special case of the

content-model: EMPTY for an element with no sub-

elements; ANY for an element that can contain any

sub-element; #PCDATA for an element that can con-

tain only text. When the element can contain sub-

elements mixed with text, the content-model is called

mixed-content.

Attribute de�nitions are introduced using <!ATTLIST

>. Attributes can be of various types such as ID for

a unique identi�er, CDATA for text or NMTOKEN for to-

kens. They can be optional (#IMPLIED) or manda-

tory (#REQUIRED). Attributes can also be of an ar-

bitrary type de�ned by a notation, introduced using

<!NOTATION >. Optionally, attributes can have a de-

fault or a constant value (#FIXED).

Entity references are constants that can be used insid-

e XML documents1. Entity references are introduced

using <!ENTITY name> and referred to using &name;.

Entity references can be used inside the DTD itself {

to de�ne other entities { and inside documents.

Entity parameters can be seen as text macros that

can be used internally inside the DTD: they have no

meaning outside of the DTD. They are introduced

using <!ENTITY % name > and are referred to inside

the DTD using %name;.

A given XML document can refer to its DTD in 4

di�erent ways, de�ned by the required mark-up dec-

laration (RMD) <?XML version="1.0" RMD=''?>.

First it can point to no DTD2 and corresponds

to RMD='NONE'. Second, it can point to an exter-

nal DTD, as a remote resource. Third, it can in-

clude an internal DTD, in-lined inside the document

(RMD='INTERNAL'). Fourth, it can use a combination

of both (RMD='ALL').

In the previous description, we have omitted on pur-

pose some details that are not relevant for the results

of the survey.

1Like < and > that represent < and > in HTML.
2In this case, only well-formedness matters

3 The DTD survey

We present the details of the survey we have con-

ducted on DTDs and we �rst describe the method-

ology. The �rst step is the harvesting of DTDs.

Fortunately, repositories are emerging such as Mi-

crosoft BizTalk. For this paper, we have been using

http://www.xml.org. Harvesting is done by hand s-

ince the repository points to the web page of the cor-

responding project and not the DTD itself. In some

cases, access requires a registration. We have selected

DTDs from di�erent domains (see Figure 3) in order

to get a representative sample of XML applications.

Unexpectedly, the second step is the cleaning of the

DTDs. Our experience proved that most of the DTDs

are incorrect, with some missing declarations or some

typos. This is a paradoxical discovery since DTDs

are made to validate XML documents: Quis custodi-

et custodes ipsos! The third step is to normalize,

by expanding parameter entities and translating the

DTD structure into a convenient data-structure. The

next step is themining of the DTDs. The term min-

ing is actually misleading since in most cases we know

what we are looking for. The �nal step is reporting

and visualization of the results.

ROOT

fpml:FpML

|

fpml:Trade mdr:MarketData

,

fpml:tradeIDs fpml:product fpml:partyInformation

?

tid:TradeIDs

tid:TradeID

+

,

tid:partyReference tid:transactionReferenceNumber tid:location

?

tid:system

?

PCDATA PCDATA PCDATA PCDATA

|

ipc:Cancellable

ips:SwapStreams

ipso:Swaption

ipcf:CapFloor

fpvo:FXVanillaOption

ipff:VanillaFixedFloat

fpsl:FXSingleLeg fpswp:FXSwap

fpba:FXBarrierOption

fpbn:FXBinaryOption

fpfra:ForwardRateAgreement

fpfo:FXFixingOption

fpbb:FXBinaryBarrierOption

ipc:option

isos:OptionStream

,

isos:optionType isos:optionPartyReference

?

isss:adjustmentBusinessCenters

isos:optionDateSchedule

+

isos:underlier

PCDATA PCDATA

d:BusinessCenters

d:businessCenter

+

PCDATA

|

*

d:ExplicitOptionAdjustableDateSchedule

d:OptionAdjustableDateSchedule

,

d:exerciseAdjustments d:notificationAdjustments

d:notificationOffset

d:ExerciseSteps

d:CommonAdjustments

,

d:businessDayConvention |

PCDATA d:adjustmentsReference d:adjustments

PCDATA

d:NotificationOffset

,

d:daysOffset |

PCDATA

|

d:ExerciseStep

*

,

,

|

d:notificationReference

d:exercisePartyReference

d:exerciseDate ,

PCDATA d:startDate d:endDate

PCDATA PCDATAPCDATA

PCDATA

d:EuropeanExerciseStep

*

d:AmericanExerciseStep

*

,

| d:percentageOfNotional

d:notificationDate

PCDATA

PCDATA

,

d:start d:end

| d:strikeInterpolation d:nextPercentageOfNotional

?

PCDATA PCDATA

PCDATA PCDATA

,

?

?

d:exerciseDates d:notificationDates

d:AdjustableDateSchedule

|

, ,

| d:relativeTo d:offsetDays

?

d:periodScheduleReference d:periodsReference d:periodReference

PCDATA PCDATA PCDATA

PCDATA PCDATA

?

d:frequency d:rollConvention

?

|

PCDATA PCDATA

d:ExtendedAdjustableDateSchedule

,

d:dateScheduleReference

PCDATA

,

?

isfo:VanillaFloatingStream

?

isfi:VanillaFixedStream

?

ipcf:capFloorStream

?

ips:streams

isss:SwapStream

+

,

isss:payerReference isss:receiverReference

isss:effectiveDate

isss:terminationDate

isss:notionalSchedule isss:roundingDirection isss:roundingPrecision isss:initialStubPayment

?

isss:initialPrincipalPayment

? isss:accrualBasis

isss:calculationPeriods

isss:paymentDates

isss:rate

isss:resetDates

?

isss:finalStubPayment

?

isss:finalPrincipalPayment

?

PCDATA PCDATA

d:AdjustableDate

,

d:date|

PCDATA

m:NotionalSchedule

,

m:initialNotional

m:notionalSteps

m:Money

,

| m:amount

m:ccy m:currency

PCDATA PCDATA

PCDATA

|

m:ExplicitNotionalSteps

m:RegularNotionalSteps

m:DateBasedNotionalStep

+

,

m:date | m:stepTerm

PCDATA m:percentage m:notionalAmount

PCDATA

PCDATA

,

| m:changePerStep

m:periods m:periodSchedule

d:AdjustablePeriodSchedule

,

| |

d:periodSchedule

d:BasicPeriodSchedule

,

?

m:NotionalStep

,

|

PCDATA PCDATA p:InterestPayment

,

p:paymentDate

p:calculationPeriod

p:resetDates p:rate

d:AdjustablePeriod

,

|

|

r:FloatingRate

r:OptionReset

,

r:initialRate

?

r:isda-rate-option r:maturityPeriod r:maturityMultiple r:spread r:leverageFactor

?

PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA

,

r:option r:embedded r:strike

r:underlier

PCDATA PCDATA |

r:FixedRate

,

r:fixed r:spreadSchedule

?

PCDATA r:SpreadSchedule

r:steps

r:SpreadStep

+

,

r:percentage r:date

PCDATA PCDATA

p:Payment

,

p:paymentAmount

PCDATA

|

,

isfi:payerReference

isfo:adjustmentBusinessCenters

isfi:effectiveDate

isfi:terminationDate

isfo:notional

isfo:initialPrincipalPayment isfo:regularPaymentDateSchedule d:adjustCalculationPeriods d:accrualBasis

isfo:rate

isfo:resetBusinessDayConvention isfo:resetAdjustmentsReference isfo:refixInArrears isfo:refixOffset isfo:roundingDirection isfo:roundingPrecision isfo:finalPrincipalPayment

PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA

,

isfi:adjustmentBusinessCenters

isfi:notional

isfi:initialPrincipalPayment isfi:regularPaymentDateSchedule

isfi:rate

isfi:finalPrincipalPayment

,

iscf:payerReference iscf:receiverReference

iscf:adjustmentBusinessCenters

iscf:effectiveDate

iscf:terminationDate

iscf:notionalSchedule iscf:roundingDirection iscf:roundingPrecision iscf:initialStubPayment

iscf:initialPrincipalPayment

iscf:regularSwapPeriods

iscf:accrualBasis

iscf:calculationPeriods iscf:paymentDates

iscf:rate

iscf:resetDates

PCDATA PCDATA PCDATA PCDATA PCDATA

ipso:option

,

ipcf:fixedStream

,

fpvo:productID fpvo:productType fpvo:vanillaOption

PCDATA PCDATA ftvo:FXVanillaOptionTemplate

,

fxos:fxOptionCore fxos:optionPrice

fxos:FXOptionCore

,

fxos:buyerReference fxos:sellerReference fxos:ccy1 fxos:ccy2 fxos:baseCcy fxos:putCall

fxos:ccy1Amount

fxos:ccy2Amount

fxos:settlementDate fxos:strikeRate fxos:OptionMaturity

PCDATA PCDATA PCDATA PCDATA PCDATA fxos:PutCall

,

fxos:indicator fxos:ccy

PCDATA PCDATA

PCDATA r:FXRate

,

r:ccy1 r:ccy2 r:type

?

r:quoteBasis r:rate r:valueDate

?

PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA

,

fxos:date fxos:cutoffLocation fxos:cutoffTime

PCDATA PCDATA PCDATA

fxos:OptionPremium

,

fxos:PremiumTerm

fxos:premiumAmount

fxos:premiumPaymentDate

,

fxos:quoteBasis fxos:value

PCDATA PCDATA

PCDATA

,

ipff:fixedStream ipff:floatingStream

,

fpsl:productID fpsl:productType fpsl:fxLeg

PCDATA PCDATA ftsl:FXLegTemplate

,

fxs:ccy1 fxs:ccy2 fxs:ccy2BuyerReference

fxs:ccy1Amount

fxs:ccy2Amount

| fxs:exchangeRate

PCDATA PCDATA PCDATA PCDATA , fxs:settlementDate

fxs:ccy2SettleDate

PCDATA PCDATA

PCDATA

,

fpswp:productID fpswp:productType fpswp:nearLeg fpswp:farLeg

PCDATA PCDATA

,

fpba:productID fpbb:productType fpba:barrierOption

PCDATA PCDATA PCDATA PCDATA ftba:FXBarrierOptionTemplate

,

fxos:style fxos:fxOptionBarriers

PCDATA fxos:FXOptionBarrierCore

+

,

fxos:barrierType fxos:direction fxos:startDate

?

fxos:endDate

?

fxos:barrierRate

PCDATA PCDATA PCDATA PCDATA

,

fpbn:productID fpbn:binaryOption

PCDATA ftbn:FXBinaryOptionTemplate

,

fxos:fxOptionBinaryCore

fxos:FXOptionBinaryCore

,

fxos:binaryRate

fxos:binaryNotional

,

fpfra:productID fpfra:productType fpfra:forwardRateAgreement

PCDATA PCDATA ftfra:ForwardRateAgreementTemplate

,

fras:fraCore

fras:averageFRA

?

fras:FRACore

,

fras:sellerReference fras:buyerReference fras:fixingDate fras:startDate fras:endDate fras:settlementDate

fras:notional

fras:dayCountFraction fras:settlementRule fras:fraFixedRate fras:floatingRates

PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA fras:FRAFixedRate

,

fras:fixedRate fras:rateConvention

PCDATA PCDATA

+

fras:AverageFRA

,

fras:discountRate fras:fixings

PCDATA fras:Fixing

+

,

fras:fixingWeighting fras:fixingRate

?

PCDATA r:Rate

,

fpfo:productID fpfo:productType fpfo:fixingOption

PCDATA PCDATA ftfo:FXFixingOptionTemplate

,

ftfo:fxOptionFixings

ftfo:FXOptionFixingRef

,

ftfo:fixingFrequency ftfo:holidays ftfo:fixingPageRef ftfo:startDate ftfo:fixingQuoteBasis ftfo:numberOfFixesToDate | ftfo:fixings

PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA ftfo:fxOptionFixingTTRef

ftfo:FXOptionFixingTTRef

, ,

ftfo:averageQuoteBasis ftfo:averageToDate

PCDATA

ftfo:numberOfITMFixes

ftfo:rebate

PCDATA

ftfo:Fixing

+

,

ftfo:fixingDate

ftfo:fixingRate

ftfo:fixingWeighting ftfo:TTfixingITM

?

PCDATA PCDATA PCDATA

,

fpbb:productID fpbb:binaryBarrierOption

PCDATA ftbb:FXBinaryBarrierOptionTemplate

,

pty:PartyInformation

,

pty:masterAgreements

?

pty:tradeParties

pty:MasterAgreement

+

,

pty:agreementInPlace pty:datedDate pty:masterAgreementNumber pty:partyReference1 pty:partyReference2

PCDATA PCDATA PCDATA PCDATA PCDATA

pty:Party

+

,

pty:partyType

pty:CorporateInformation

pty:creditInformation

?

pty:confirmInformation

?

pty:SettlementInstructions

?

PCDATA

,

pty:shortName pty:longName

?

pty:website

?

pty:corporateAddress

?

pty:parent

?

pty:primaryContact

?

pty:taxID

?

PCDATA PCDATA PCDATA

a:Address

,

a:streetAddress

?

a:city a:state

?

a:country a:postalCode

?

a:region

?

a:StreetAddress

a:streetLine

+

PCDATA

PCDATA PCDATA PCDATA PCDATA PCDATA

?

a:Contact

,

a:contactName a:contactOrganizationName a:emailAddress

*

a:phoneNumber

+

a:faxNumber

?

a:contactAddress

?

a:cable

?

a:telex

?

a:businessGroup

?

PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA

PCDATA

pty:CreditRating

+

,

pty:rating pty:ratingType

PCDATA PCDATA

pty:ConfirmInformation

,

pty:primaryConfirmContact pty:secondaryConfirmContacts

?

+

+

,

pty:settlementContact

pty:paymentInstructions

pty:PaymentInstructions

,

pty:settlementCurrency pty:payFromName

?

pty:payFromAddress

?

pty:correspondentInformation

pty:intermediaryInformation

?

pty:beneficiaryInformation

PCDATA PCDATA

pty:FIRoutingInformation

,

pty:fiName pty:fiAddress

?

pty:fiAccountNumber

?

pty:fiRoutingID

?

pty:fiRoutingIDType

?

pty:fiReferenceText

?

PCDATA PCDATA PCDATA PCDATA PCDATA

,

?

mdr:fxoVolatility

mdr:FXOVolatility

,

mdr:valueDate mdr:inputType mdr:volCcyPairs

PCDATA PCDATA mdr:VolCcyPair

,

mdr:termCcy mdr:baseCcy mdr:premiumCcy mdr:smileDeltaTerms mdr:terms

PCDATA PCDATA PCDATA PCDATA mdr:Term

+

,

mdr:inputMethod mdr:termValue mdr:volatilities

PCDATA PCDATA mdr:Volatility

+

,

mdr:delta mdr:volatilityValue mdr:termPutCall

?

PCDATA PCDATA PCDATA

Figure 1: View of a DTD for �nancial transactions

The experiments were done using sgrep3, Perl, shell

scripts, and Java programs based of the IBM XM-

L API. The entity expansion was performed using a

modi�ed version of xmlproc4, by Lars M. Garshol.

We used Graphviz5 from AT&T to generate DTD

graphs.

3http://www.cs.helsinki.fi/~jjaakkol/sgrep.html
4http://www.stud.ifi.uio.no/~lmariusg/download/

python/xml/xmlproc.html
5http://www.research.att.com/sw/tools/graphviz

2

ROOT

schema

,

|

*

| |

*

include import

annotation

|

*

appinfo documentation

ANY ANY

simpleType

complexType

element

group

attributeGroup

notation

,

?

|

*

minInclusive minExclusive maxInclusive maxExclusive precision scale pattern enumeration length maxlength minlength encoding period

? ? ? ? ? ? ? ? ? ? ? ? ?

,

?

|

|

*

,

|

*

|

*

anyAttribute

?all

choice

sequence

any

,

?

|

?

|

*

unique key keyref

,

?

selector field

+

PCDATA PCDATA

,

? +

,

? +

,

?

|

*

|

?

,

?

|

*

,

?

|

*

attribute

,

?

?

,

?

|

* ?

Figure 2: View of the XML-Schema DTD

3.1 What we have been looking at

We are interested in various properties of a DTD.

First we look at its size, in terms of number of ele-

ments, attributes and entity references.

Second, we look at its structure, in terms of number

of root elements, depth and the complexity of the

the content-model. In �gure 3, CM represents the

maximum depth of the content model: 0 for EMPTY; 1

for a single element, a sequence or a choice; ...; n for

an alternation6 of sequences and choices of depth n.

Third, we look at some speci�c aspects such as the use

of mixed-content (MX), ANY, IDREFs, and the kind

of attribute decorations used (I,R,F for implied, re-

quired and �xed).

Finally, we draw graphs (Figures 1 and 2) to get some

insights about DTD patterns. Graphs only display

elements; 4 corresponds to sequences; r to choices.

3.2 Results

Some quantitative results from the survey are pre-

sented in Figure 3. The detailed results will be avail-

able in the full version of this paper.

As mentioned previously, the �rst striking observa-

6(a,(b|(c,d))) has depth 3

tion is that most published DTDs are not correct,

with missing elements, wrong syntax or incompatible

attribute declarations. This might prove that such

DTDs are being used for documentation purposes on-

ly and are not meant to be used for validation at all.

The reason might be that because of the ad-hoc syn-

tax of DTDs (inherited from SGML), there are no

standard tools to validate them. This issue will be

addressed by proposals that use XML as the syntax

to describe DTDs themselves (see Section 5).

The second remark is that a DTD is not always a

connected graph. This is not an issue for validation

since the XML document will mention the root that

needs to be used for validation. But it is not clear

why in such cases the DTD is not split into multiple

DTDs.

A third really interesting observation { that we got

from visual representations of DTDs (see Figure 4)

concerns the encoding tuples. Unlike SGML that

o�er the & operator to create unordered sequences,

XML only o�er sequences (",") or choices ("|"). In

order to encode a tuple <a,b,c>, where SGML would

use (a & b & c), XML requires (a,b,c)|(a,c,b)|

(b,c,a)|(b,a,a)|(c,a,b)|(c,b,a). The oÆcial

workaround 7 seems to be (a|b|c)*, which will vali-

date the tuple but has a totally di�erent meaning!

?

|

*

pattern enumeration length maxlength minlength encoding period

?

Figure 4: The tuple encoding issue

We also notice that DTD authors try to mimic in-

heritance and capture modularity via entity refer-

ences. Unfortunately, this inheritance is purely syn-

tactic and sometimes leads to some cascading mis-

takes.

The use of mixed-content is a good indication of the

kind of application intended for the DTD. No mixed-

content implies pure data processing (BSML, OSD)

while the presence of mixed content suggests more

textual content (XHTML, XMI/UML, Adex).

An intriguing fact is the presence of very complex and

deep content models (up to depth 5 !).

Some DTDs contain some really strange patterns

where for instance empty elements are systematically

used instead of attributes.

7This way to model tuples is actually recommended by

some people and is being used for the description of the XML-

Schema DTD.

3

DTD name Domain Elem/Attr MX CM ID/IDREF I/R/F ANY Ent. Ref/Para

Adex classi�eds 365/5194 7 2 366 / 4 4550 / 13 / 4 0 0/17

BSML DNA sequencing 111 / 2595 0 3 88 / 105 2490 / 58 / 6 0 5/36

EcoknowMics economics 105 / 264 0 2 89 / 0 0 / 93 / 171 0 0/0

HL7 medical informatics 109 / 252 69 2 102 / 7 115 / 14 / 119 0 1/24

ICE content syndication 48 / 157 0 3 0 / 0 82 / 63 / 1 1 0/10

MusicML music 12 / 17 0 2 0 / 0 6 / 5 / 0 0 0/12

OSD software description 15 / 15 0 1 0 / 0 3 / 11 / 0 0 0/0

PML web portals 46 / 293 1 2 0 / 0 90 / 203 / 0 0 0/3

XMI UML data modeling 398 / 1636 23 1 119 / 122 1587 / 46 / 1 22 0/2

XHTML HTML 77 / 1373 44 5 70 / 3 1344 / 12 / 4 0 252/59

XML-Schema 37 / 91 0 4 12 / 0 43 / 23 / 2 2 0/46

Xbel bookmarks 9 / 13 0 2 3 / 1 8 / 3 / 2 0 0/6

Figure 3: Some quantitative results for DTDs from http://www.xml.org.

Finally, it is clear that most of the features (from the

SGML legacy) of DTDs are not being used, such as

notations and fancy attribute types. More surpris-

ingly, ID and especially IDREFs are very infrequently

considered (see Figure 3): since ID and IDREFs are

not typed (an IDREF can point to any ID, people pre-

fer not to use them. These mechanism can always be

implemented at the application level.

Some conclusions from this preliminary survey are

that: (1) DTD have all sort of shapes and sizes and

are used for many diverse purposes; (2) DTD features

are not properly understood (some features are never

used, and some are misused); (3) there are many ways

to do the same things and it is not clear why people

are using one solution rather than another; (4) people

use hacks to solve DTD shortcomings, sometimes for

better, sometimes for worse.

A more practical conclusion from our database per-

spective is that relying on DTDs for storage, com-

pression and optimization seems foolish since DTDs

are often a misleading approximation of the intended

structure (e.g. tuple encoding example). Moreover,

a DTD o�ers only fuzzy guarantees about the struc-

ture of the XML document: a* might mean 0, 1 or

20 repetitions. `We would therefore recommend to

use the actual structure of documents like in [4, 12]

rather to bet8 on the DTD [14].

4 Shortcomings & requirements

The conclusions of the survey show that DTDs { as

they are { are not suitable for what we want to do

with them.

DTDs are su�ering from the heavy SGML ancestry.

Even though some complex features have been re-

moved, XML DTDs are still too complex, with text

processing rather than data processing in mind.

8The author has to acknowledge that before conducting the

survey, he was heavily betting on DTDs too.

DTDs are also su�ering from a big lack of under-

standing. For instance, people are still confused

about element vs attributes.

But more critically, DTDs seem to su�er from the

same shortcomings as the �rst programming lan-

guages. In Figure 5, we "compare" DTD with the

C programming language.

XML DTD Programming language

validation type-checking
entity references constants
entity parameters macros
ANY void

IDREF void*

DTD header �le
| variant
, tuple (with order)
? nil

+/* list

Figure 5: DTDs vs programming languages

All these analogies are good news because it means we

can get some inspiration from modern programming

languages. We brie
y list some features that DTDs

could bene�t from.

From an engineering point of view, DTDs would

strongly bene�t from a convenient system for modu-

larity. The actual system of entities and catalogue

is clumsy and does not really scale. The use of

namespaces9 and packages would be a big improve-

ment.

XML DTDs would also bene�t from a more expres-

sive content-model that is suitable for both text and

data processing.

As clearly shown by the survey, in the absence of

typed references, people are reluctant to use of them.

Being able to specify keys and foreign keys is crucial.

Finally, we think that DTDs will soon face the crit-

ical problem of versioning, including backward and

9Not part pf the XML 1.0 speci�cation

4

forward compatibility. To the best of our knowledge,

this issue has not been elegantly resolved in the S-

GML world. Database schemas are well known for

evolving and DTDs should be expected to do exactly

the same.

5 Replacement for DTDs

After denigrating DTDs and writing down the wish

list for the New Document Type Descriptors, let us

look at the current proposals. XML users have real-

ized very early the shortcomings of DTDs and have

come up with some extensions such as SOX, DCD,

XML-Data, etc. In the rest of this section, we present

various approaches to replace DTDs and some recen-

t corresponding proposals. It is worth noting that

most of these proposals use XML itself as the syntax,

which permits to use the XML tools to check them.

Grammar-based, parsing based approaches:

These approaches de�ne the structure of an XML

document in terms of production rules, starting from

the root of the document, just like DTDs.

XML-Schemas10 is the oÆcial W3C replacement for

DTDs. Their goal is to \constrain and document the

meaning, usage and relationships of their [XML doc-

uments] constituent parts". The proposal is split into

two speci�cations: one for data-types [18] (parsing

oriented) and one for structures [19].

Even though the proposal does not address all the

issues pointed out by the survey, it is interesting to

note that it brings back a tuple construct (SGML &,

but with some syntactic restrictions) and o�ers a re-

placement for ANY. It also addresses the issue of mod-

eling by o�ering grouping, modularity and restric-

tion/extension mechanisms for data-structures. The

proposal also permits to de�ne identity constraints,

where keys (including composite keys) can be de�ned

using elements and/or attributes.

Another proposal is the Document Structure De�ni-

tion (DSD) [10] which among other things o�er con-

text dependent descriptions, constraints and typed

references. It also support evolution via document

inclusion and rede�nition.

Constraints: A di�erent approach exempli�ed by

the Schematron [8], is to describe the structure of an

XML document using only constraints and pattern-

matching. Such constraints are de�ned by a context

where they apply and a predicate they must satis-

fy. Both are expressed as XPath expressions11. An

interesting aspect is that constraints can be used

10See [17] for a tutorial.
11The Schematron is similar to an XSL-T transform that

would output validation messages instead of content.

to describe the structure with di�erent granulari-

ties. Schematron constraints are much more expres-

sive than the ones o�ered by XML-Schema's. For

instance, it is possible to type references by using a

constraint that states that the node reached by fol-

lowing an IDREF is of a given type. It is not clear

though if all constraints expressed in the language are

decidable.

Type systems: Another proposed approach is to

use type systems borrowed from programming lan-

guages in order to enforce some structure on XML

documents. A type-system for semi-structured data

has been proposed in [2]. Embedding XML into func-

tional languages has also been looked at in [7, 21]: in

this case the emphasis has been to o�er a framework

to validate programs written against a given DTD

rather than validate documents. Various toolkits al-

so o�er some ad-hoc mappings from XML into Java

classes.

Other data-models: Finally, there are some pro-

posals to use other representation to describe DTDs

such as description logics or UML [9]. For the latter,

a mapping from DTDs to UML has been de�ned and

{ not surprisingly { the main glitches occur at the

level of the content-model.

In most cases, these approaches are complementary

and do not address the same kind of issues. It is al-

ready interesting to remark that constraint-based and

grammar-based approaches are being put together by

the XML-Schemas proposals.

6 Future Work

We present some future work that has arisen, some-

times unexpectedly, from this survey.

Systematic mining: As we mentioned above, the

term mining is misleading because we somehow knew

what we were looking for. The advent of XML gives

us the unique opportunity to analyze and compare

data modeling strategies12. This would hopefully

lead to the discovery of XML patterns and the cre-

ation of XML modeling recipes.

Metrics for DTD complexity: For a given do-

main are there some DTDs better than others? In

the object-oriented community, metrics [3] have been

de�ned and applied to de�ne complexity of programs.

Can they be adapted to DTDs?

The meaning of DTDs: XML is claimed to be a

self-describing format. By using NLP techniques and

ontologies, it would be interesting to see if DTDs (el-

12This is to be contrasted with database schema that remain

the secret property of organizations.

5

ement and attributes names) are useful to character-

ize the domain of a given document. This exercise is

not as trivial as it appears: elements and attributes

are not always words but acronyms, abbreviations in-

cluding namespaces that will require smart tokeniza-

tion programs.

7 Conclusion

By its extensible nature, the XML language impera-

tively needs a constraint structure that is represent-

ed today by DTDs. Unfortunately, DTDs have been

designed for a speci�c domain (text processing appli-

cations) which represents a small part of the scope

of XML. As a speci�cation tool for XML, DTDs are

simply inadequate.

In this paper we have presented the preliminary re-

sults of a survey we have started in Fall 1999. Its

primary motivation was to better understand DTD-

s by looking at how they are actually being used to

describe the structure of XML documents. Surpris-

ingly, not unlike living organisms, XML DTDs have

mutated from SGML DTDs into something that tries

to �t the requirements of XML (both text and data

processing). Because of their inherited shortcomings,

XML DTDs have been hacked by users, in order to re-

solve serious issues such as tuple encoding and mod-

ularity. Other issues such as reference typing and

versioning have simply been postponed, for lack of

immediate workarounds.

However, in this survey we have only scratched the

surface of the problem: we not only need a better way

to capture the structures of XML documents, but also

tools and methodologies to de�ne them properly.

It is encouraging though to note that the current pro-

posals to replace DTDs are taking some of these is-

sues into account and o�er cleaner constructs to cap-

ture what is needed by XML applications.

Finally, even though DTDs are
ourishing, the cor-

responding XML documents are still nowhere to be

found. The next interesting question will be to see

how XML documents are being instantiated for a

given DTD. This will be of special interest to the

database community who will be "responsible" for

eÆciently storing, indexing, querying, mediating and

transforming such documents. But this is another

story...

Acknowledgements: The author would like to thank

Val Tannen, the members of the Database Research Group

and the Programming Languages Club for stimulating

discussions about XML, constraints and types; Henry

Thompson for a sneak-preview of XML-Schema; Frank

Olken for a sneak-preview of XML-Schema constraints.

References

[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data

on the Web : From Relations to Semistructured Data and

Xml . Morgan Kaufmann, 1999.

[2] Peter Buneman and Benjamin Pierce. Union Types for

Semistructured Data. Technical Report MS-CIS-99-09,

University of Pennsylvania, Apr 1999.

[3] S. R. Chidamber and C. F. Kemerer. A Metrics suite for

Object-Oriented Design. IEEE Transaction on Software

Engineering, 20(6):476{493, 1994.

[4] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing

Semistructured Data with STORED. In SIGMOD. ACM

Press, 1999.

[5] Mary F. Fernandez and Dan Suciu. Optimizing regular

path expressions using graph schemas. In ICDE. IEEE

Computer Society, 1998.

[6] Roy Goldman and Jennifer Widom. Dataguides: En-

abling query formulation and optimization in semistruc-

tured databases. In VLDB'97. Morgan Kaufmann, 1997.

[7] Haruo Hosoya and Benjamin C. Pierce. XDuce: An XML

Processing Language. Available from http://www.cis.

upenn.edu/~hahosoya/papers/xduce-prelim.ps, Dec

1999.

[8] Rick Jelli�e. The Schematron. Available from http://

www.ascc.net/xml/resource/schematron, 1999.

[9] W. Eliot Kimber. Using UML To De�ne XML Docu-

ment Types. Available from http://www.drmacro.com/

hyprlink/uml-dtds.pdf, Dec 1999.

[10] N. Klarlund, A. Moller, and M. Schwartzbach. DSD: A

Schema Language for XML. Available at http://www.

brics.dk/DSD/, Nov 1999.

[11] Hartmut Liefke. Horizontal Query Optimization on Or-

dered Semistructured Data. In WebDB, 1999.

[12] Hartmut Liefke and Dan Suciu. XMill: an EÆcient Com-

pressor for XML Data. In SIGMOD. ACM Press, 2000.

[13] Jason McHugh and Jennifer Widom. Query Optimization

for XML. In VLDB. Morgan Kaufmann, 1999.

[14] Jayavel Shanmugasundaram at al. Relational Databases

for Querying XML Documents: Limitations and Oppor-

tunities. In VLDB. Morgan Kaufmann, 1999.

[15] W3C. Extensible Markup Language (XML) 1.0.

W3C Recommendation 10-February-1998. Available from

http://www.w3.org/TR/1998/REC-xml-19980210.

[16] W3C. XML Path Language (XPath) 1.0. W3C Rec-

ommendation 16 November 1999. Available from http:

//www.w3.org/TR/xpath.

[17] W3C. XML Schema Part 0: Primer. Working Draft 25

February 2000. Available from http://www.w3.org/TR/

xmlschema-0.

[18] W3C. XML Schema Part 1: Structures. Working Draft

25 February 2000. Available from http://www.w3.org/

TR/xmlschema-1.

[19] W3C. XML Schema Part 2: Datatypes. Working Draft

25 February 2000. Available from http://www.w3.org/

TR/xmlschema-2.

[20] W3C. XSL Transformations (XSL-T) 1.0. W3C Rec-

ommendation 16 November 1999. Available from http:

//www.w3.org/TR/xslt.

[21] Malcolm Wallace and Colin Runciman. Haskell and XM-

L: Generic Combinators or Type-Based Translation? In

International Conference on Functional Programming,

Paris, France, Sept 1999.

6

