
Integration of XML Data in XPathLog

Wolfgang May
Institut für Informatik, Universität Freiburg, Germany

may@informatik.uni-freiburg.de

Abstract

XPathLog is a logic-based language for manipulating and integrating XML data. It extends the XPath
query language with Prolog-style variables. Due to the close relationship with XPath, the semantics of
rules is easy to grasp. XPathLog defines a semantics for XPath expressions in rule heads, declaratively
specifying how to create and update XML trees and nodes.

In this paper, we show how XPathLog can be used to manipulate and restructure a database con-
taining several XML trees. By linking subtrees, fusing elements and defining synonyms, data can be
restructured and integrated into result trees. We illustrate the practicability of the approach by excerpts
of a case study done with the LOPiX system.

1 Introduction

XML has been designed and accepted as the framework for semi-structured data where it

plays the same role as the relational model for classical databases. Specialized languages are

available for XML querying, e.g., XML-QL [DFF+99], Quilt/XQuery [CRF00, XQu01] and

for transformations of XML sources, e.g., XSLT [XSL99] (also XML-QL and XQuery can

be used for generating new XML documents from given ones since their output format is

XML), but yet none of them can be seen as an XML data manipulation language. For writing

applications for creating and manipulating XML data, the dominating language is Java,

regarding the DOM model as a data structure where applications are built on. A proposal

for updating constructs for XML languages has been recently presented in [TIHW01].

We propose a declarative, Prolog-style language for manipulation and integration of XML

documents. The syntax and querying semantics is based on XPath [XPa99]. Whereas XSLT,

XML-QL, and Quilt/XQuery use XML patterns for generating output (with the consequence

that their output can only generate XML, but it cannot be used for manipulating an existing

XML instance), our language deviates from these approaches: XPath-based syntax is used for

querying (rule bodies) and generating/manipulating the data (rule heads). Also in contrast

to the XML mainstream (i.e., the DOM and XML Query Data Model [XMQ01]), XPathLog

works on an abstract, edge-labeled graph-based data model as an internal representation of

the current XML database. This design decision has been motivated by the experiences with

F-Logic/FLORID in information integration. The data model is especially tailored to data

integration, allowing to re-link elements into multiple overlapping trees, fusing elements, and

introducing synonyms for subelement and attribute names (note that XML-QL is also based

on a graph data model, inuenced by the STRUDEL project [FFLS97]). In the present paper

we keep the formal, theoretical part in the background (details can be found in [May01b]),

focusing on an intuitive presentation.

2

Structure of the paper. After reviewing XPath as the base of our language, we introduce the

querying part of XPathLog in Section 2. Section 3 gives an idea of X-structures which serve

both as the theoretical foundation and as the internal representation of the XML database.

Section 4 de�nes the semantics of XPathLog rules, focusing on the semantics of rule heads

for generating and modifying XML data. Section 5 describes the operations and strategies

for XML Data integration by exploiting the exibility of the internal data model. Section 6

gives a perspective how XML data, XML metadata (DTDs and XML Schema) and ontologies

can be handled and combined uniformly in this framework. Section 7 concludes the paper.

2 XPathLog

2.1 XPath

XPath [XPa99] is the common language for addressing node sets in XML documents. It is

based on navigation through the XML tree by location paths of the form //step/step/.../step.
Every location step is of the form axis::nodetest [filter]*, denoting that navigation goes along

the given axis. Along the chosen axis, all elements which satisfy the nodetest (the nodetest
speci�es the nodetype or an elementtype which nodes should be considered) are selected.

From these, the ones qualify which satisfy the given filter(s) (applied iteratively). Starting

with this (local) result set, the next location step is applied (for details, see [XPa99], or

the formal semantics given in [Wad99]). The most frequently used axes are abbreviated

as path/nodetest for path/child::nodetest, path/@nodetest for path/attribute::nodetest, and
path//nodetest for path/descendant-or-self/child::nodetest.

Example 1 (XML, XPath) Consider the following excerpt of a geopolitical database (an XML rep-
resentation of the CIA World Factbook [CIA]) for illustrations.

DTD:

<!ELEMENT cia (continent+, country+)>

<!ELEMENT continent EMPTY>
<!ATTLIST continent id ID #REQUIRED name CDATA #REQUIRED>

<!ELEMENT country (ethnicgroups*, religions*, languages*, borders*)>
<!ATTLIST country name CDATA #REQUIRED car code ID #REQUIRED

continent IDREF #REQUIRED area CDATA #IMPLIED
population CDATA #IMPLIED capital CDATA #REQUIRED>

<!ELEMENT ethnicgroups (#PCDATA)> <!ATTLIST ethnicgroups name CDATA #REQUIRED>
(similar for religions and languages)
<!ELEMENT borders (#PCDATA)> <!ATTLIST borders country IDREF #REQUIRED>

Excerpt of the instance:

<cia>
<continent id=’europe’ name=’Europe’/>

<country car code=’CH’ capital=’Bern’ continent=’europe’ name=’Switzerland’
area=’41290’ population=’7207060’ >

<religions name=’Roman Cath.’>47.6</religions> <religions name=’Protestant’>44.3</religions>
<languages name=’French’>18</languages> <languages name=’German’>65</languages>
<languages name=’Italian’>12</languages> <languages name=’Romansch’>1</languages>
<borders country=’A’>164</borders> <borders country=’F’>573</borders>
<borders country=’D’>334</borders> <borders country=’I’>740</borders>

3

<borders country=’FL’>41</borders>
</country>
</cia>

Consider the country element only. The XPath expression
//country[@name]/languages[@name=“German”]

returns all elements which contain information on german language in a country. Note that it is not
possible to output also the name of the country using XPath.

XPath is only an addressing mechanism, not a full querying language like, e.g., the SQL

querying construct. It provides the base for most XML querying languages, which extend it

with their special constructs (e.g., functional style in XSLT, and SQL/OQL style (e.g., joins)

in Quilt/XQuery). In the case of XPathLog, the extension feature are Prolog style variable

bindings and rules.

2.2 XPathLog: Adding Variable Bindings to XPath

In Logic Programming languages, instead of a result set, for every match, a tuple of variable
bindings is returned which can be used in the rule head. We extend the XPath syntax with

the Datalog-style variable concept (and with implicit dereferencing). The variables are bound

to the names/nodes/literals (for i.e., CDATA or NMTOKENS attributes) which result from the

respective match; the formal semantics is based on that of XPath given in [Wad99].

Definition 1 (Reference Expressions)
� An XPath-Logic reference expression is an XPath AbsoluteLocationPath (we refer to the number-

ing in [XPa99, Ch. 2]) where the XPath syntax is extended as follows:
– In XPath-Logic steps, axis :: nodetest may be replaced by axis :: nodetest ! V , axis :: V ,

or axis :: V !W where V and W are variables:

[4] Step ::= AxisSpecifier "::" NodeTest Predicate*
| AxisSpecifier "::" NodeTest "->" Var Predicate*
| AxisSpecifier "::" Var Predicate*
| AxisSpecifier "::" Var "->" Var Predicate*

� XPath-Logic LocationPaths may begin with constants or variables:
[2b] ConstantLocationPath ::= constant "/" RelativeLocationPath

| variable "/" RelativeLocationPath

Definition 2 (XPathLog) Atoms are the basic components of XPathLog rules:
� an XPathLog atom is either a LocationPath or a ConstantLocationPath, or a predicate expression

over these.

� an XPathLog atom is definite if it uses only the child and sibling axes and does not contain nega-
tion, disjunction, function applications, and proximity position predicates (i.e., does not use the
position() and last() functions). These atoms are allowed in rule heads (see Section 4.2); the
excluded features would cause ambiguities what update is intended.

� an XPathLog literal is an atom or a negated atom,

� an XPathLog query is a list ?{L1; : : : ; Ln of literals (in general, containing free variables),

� an XPathLog rule is a formula of the form
A1; : : : ; Ak L1; : : : ; Ln

4

where Li are literals and Ai are definite atoms. Note that in contrast to usual Logic Programming,
we allow for lists of atoms in the rule head which are interpreted as conjunctions.

XPath-Logic combines �rst-order logic and reference expressions. In this paper, we consider

only the Horn fragment of XPath-Logic, i.e., logical rules over reference expressions and

predicates over them (for full XPath-Logic, see [May01b]).

Example 2 (XPathLog) Pure XPath expressions: pure XPath expressions (i.e., without variables)
are interpreted as existential queries which return true if the result set is non-empty:

?- //country[@name = “Switzerland”]//languages[@name=“German”]/text().
true

since the country element which has a name attribute “Switzerland” contains at least one language
descendant with a name attribute “German” and non-empty text contents.

Output Result Set: The query “?- xpath!N” for any xpath binds N to all nodes belonging to the
result set of xpath:

?- //country[@name = “Switzerland”]//languages[@name=“German”]/text()!P.
P/65

respectively, for a result set consisting of elements, logical ids are returned:
?- //country[@name = “Switzerland”]//languages[@name=“German”]!L.
L/lang-ch-german
:

Additional Variables: XPathLog allows to bind all nodes which are considered by an expression
(both by the access path to the result set, and in the filters):
The following expression returns all tuples (C;L; P) such that language L is spoken by P percent
of the people in a country C with more than 1000000 inhabitants:

//country[@name!C and @population>1000000]/languages[@name!L]/text()!P.

C/’Austria’ L/’German’ P/100
C/’Belgium’ L/’French’ P/32
C/’Belgium’ L/’German’ P/1
:

Dereferencing: Give every pair of names (N1; N2) of countries C1; C2 such that C1 and C2 are
neighbors, and C1 is larger than C2:

?- //country[@name!N1 and @area!A 1]/borders/@country[@name!N2 and @area!A 2],
A 2 > A 1.

Navigation Variables: Are there elements which have a name attribute with value “German”, and
of which type are they?

?- //Type!X[@name=“German”].
Type/languages X/lang-D-german
Type/ethnicgroups X/ethngrp-D-german
Type/languages X/lang-CH-german
:

Schema Querying: The use of variables at name positions further allows schema querying, e.g., to
give all names of subelements of elements of type country which have a name attribute:

5

?- //country/N/@name.
N/languages
N/ethnicgroups
N/religions
:

The schema querying functionality can also be used for validation wrt. a DTD or a given XML
Schema (which can be present as an XML tree in the same XPathLog database, see Example 10).

Further examples can be found and executed with the LOPiX system [LoP].

3 Data Model

As already stated, XPathLog works on an abstract, edge-labeled graph-based data model

(similar to the XML-QL data model) as an internal representation which supports an eÆcient

representation of a forest of overlapping XML trees. The data model is especially tailored to

the requirements of data integration, (e.g., re-linking elements into multiple overlapping trees,

element fusion, synonyms as described in Section 5). The full theory can be found in [May01b];

here we directly de�ne the underlying X-structures, following the DOM idea for representing

XML instances. The main features of the model are:

� the universe consists of the element nodes of the XML instance and literals used in attribute

values and text contents;

� elements have properties: (i) subelements (ordered) and (ii) attributes (unordered);

� multivalued attributes (NMTOKENS and IDREFS) are silently split;

� reference attributes are silently resolved.

Definition 3 (X- Structure) For a given XML instance, the universe consists of a set N of names
(i.e., element and attribute names), a set V of nodes, and a set L of literals. An X-structure X then
consists of
� an interpretation of predicates over N , V , and L, and

� a mapping which associates with every x 2 V two lists of pairs, representing the child and attribute
axes:
– AX (child; x) 2 ((V [L)�N)IN and

– AX (attribute; x) 2 ((V [L)�N)IN (arbitrary enumeration;
recall that reference attributes are resolved silently into references to nodes).

There is a canonical mapping from XML instances to X-structures. The X-structure contains

only the basic facts about the XML tree. For the other axes, AX (axis; x) is derived from

AX (child; x) according to the XML speci�cation. Note that the attribute and element names

in N are full citizens of the language (which e.g., may occur in predicates and can be bound

to variables).

Although it \looks like" DOM, the data model signi�cantly di�ers from the DOM and XML

Query Data Model [XMQ01]: The data model does not impose any additional requirements

on AX (child;) { thus,

� elements may have more than one parent, i.e., belong to several trees (or, tree views),

� the structure may be cyclic,

6

� there is no global order of elements, but the children relationships are ordered for each

individual element.

Thus, the internal model is not a forest, but a graph which covers the \pure" XML tree data

model. In this graph, each node n of the database is a potential root element for a tree view
which recursively consists of subelements and attributes. The subtree rooted an element r is

a \useful" XML instance if

� the subelement relation in the subtree is acyclic, and

� the targets of outgoing references from the subtree also belong to the subtree.

Nevertheless, also nodes which do not satisfy these conditions may be used as roots if the

subtree is pruned by a suitable projection to a result signature (see Section 5).

4 XPathLog Rules

XPathLog rules are logical rules over XPathLog expressions (where we additionally allow

conjunctions in the rule head).

4.1 Right Hand Side: Evaluation of Queries

The semantics of XPathLog queries wrt. an X-structure is de�ned by operators S and Q
derived from the formal semantics given in [Wad99]. S evaluates reference expressions and

returns an annotated result list, i.e.,

� a result list, and

� with every element of the result list, a list of variable bindings (answers) is associated.

Q evaluates formulas and �lter predicates and returns a set of variable bindings, similar to

Datalog. The formal de�nition of the semantics by structural induction can be found in

[May01b]. Here, we restrict ourselves to an example:

Example 3 (Semantics) Let X be the canonical X-structure to the XML instance given in Example 1,
let

expr := //country[@car code!CC and languages[@name!N and text()!P]]!C

SX (expr) = list((ch, fCC/“CH”, N/“French”, P/“18”,
CC/“CH”, N/“Italian”, P/“12”,

: g),
(b, f CC/“B”, N/“French”, P/“32”,

CC/“B”, N/“Dutch”, P/“55”,
: g),

:)

Thus, the evaluation of the rule body results in a set of variable bindings which are propagated

to the head where facts are added to the model.

4.2 Left Hand Side

Using logical expressions for specifying an update is perhaps the most important di�erence

to approaches like XSLT, XML-QL, or Quilt/XQuery where the structure to be generated is

always speci�ed by XML patterns (this implies that these languages do not allow for updating

existing nodes { e.g., adding children or attributes {, but only for generating complete nodes).

7

In contrast, in XPathLog, existing nodes are communicated via variables to the head, where

they are modified when appearing at host position of atoms.

The head of an XPathLog rule is a set of de�nite XPathLog atoms (cf. De�nition 2).

When used in the head, the \/" operator and the \[. . .]" construct specify which properties

should be added or updated (thus, \[. . .]" does not act as a �lter, but as a constructor).
Recall that for the left hand side, proximity position predicates are not allowed; instead the

position where a child or sibling should be inserted can be speci�ed by

host[axis(i) :: name! value]

where axis is either child or a sibling axis. If no position is given, the new element is appended

at the end of the axis.

The global semantics of XPathLog programs is de�ned by bottom-up evaluation based on a

TP operator similar to Datalog. Atoms in the rule head are resolved (\atomized") into atoms

of the form n[axis::e!w] and predicates over constants and variables which immediately

de�ne the extensions to the underlying X-structure (again, the formal de�nition of atomize
and of the TP operator which evaluates rules and extends X with the resulting facts can be

found in [May01b]).

Example 4 (Atomization) The query
?- //country[@name!N1 and area! A1]/borders/@country[@name!N2 and area! A2],

A 2 > A 1.
is atomized into

?- root[descendant::country! C1], C1[@name!N1], C1[@area! A1], C1[borders! B],
B[@country! C2], C2[@name!N2], C2[@area! A2], A2 > A1.

Creation of Elements. Elements can either be created as free elements by atoms of the form

/name[...] (meaning \some element of type name" { in the rule head, this is interpreted to

create an element which is not a subelement of any other element), or as subelements.

Example 5 We create a new (free) country element with some properties:
/country[@car code!“BAV” and @capital!X and city!X and city!Y] :-

//city!X[name/text()=“Munich”],
//city!Y[name/text()=“Nurnberg”].

Note that the two city elements are linked as subelements. This operation has no equivalent in the
“classical” XML model: these elements are now children of two country elements.

Modification of Elements. Already existing elements can be assigned as subelements to existing

elements by using �lter syntax in the rule head (as already done above). When using the

child or attribute axis for updates, the host of the expression gives the element to be updated

or extended; when a sibling axis is used, e�ectively the parent of the host is extended with

a new subelement. A ground instantiated atom n[child :: s ! m] makes m a subelement of

type s of n; if the atom is of the form n[child(i)::s!m] or n[following-sibling(j)::s!m], this

means that the new element to be inserted should be made the ith subelement of n or jth

sibling of n. A ground instantiated atom of the form n[@a!v] speci�es that the attribute

@a of the node n should be set or extended with v. If v is not a literal value but a node, a

reference to v is stored.

Example 6 The following rule adds a (PCDATA) subelement name:

8

C/name[text()!“Bavaria”] :- //country!C[@car code=“BAV”].
Here, the atomized version of the rule head is

C[name! N], N[/text()!“Bavaria”] :- //country!C[@car code=“BAV”].
The body produces the variable binding C/bavaria. When the head is evaluated, first, the fact
bavaria[child::name!x1] is inserted, adding an (empty) name subelement x1 to bavaria and bind-
ing the local variable N to x1. Then, the second atom is evaluated, generating the text contents to
x1.

Using Navigation Variables for Restructuring. For data restructuring and integration, the

intuitiveness and declarativeness of a language gains much from variables ranging not only over

data, but also over schema concepts (classically, relation and columns, as, e.g., in SchemaSQL

[LSS96]). Such features have already been used for HTML-based Web data integration with

F-Logic [KLW95, LHL+98].

Extending the XPath wildcard concept, XPathLog also allows to have variables at name

position. Thus, it allows for schema querying, and also for generating new structures de-

pendent on the data contents of the original one. Here, XPathLog silently casts strings into

names when a variable is bound to string contents in the body, and occurs at name position

in the head:

Example 7
Consider another data source which provides data about waters according to the DTD

<!ELEMENT terra (water+, . . .)>
<!ELEMENT water (...)> <!ATTLIST water name CDATA #REQUIRED . . . >

which contains, e.g., the following elements:
<water type=“river” name=“Mississippi”> ... </water>
<water type=“sea” name=“North Sea”> ... </water> .

This tree is converted into the target DTD
<!ELEMENT geo ((riverjlakejsea)*)>
<!ELEMENT river (. . .)> <!ATTLIST river name CDATA #REQUIRED . . . >

(analogously for lakes and seas)
by the rules

result/T[@name!N] :- //water[@type!T and @name!N].
% generate the elements . . . and then copy attributes and contents
% using variables at element name and attribute name position

X[@A!V] :- //water[@type!T and @name!N and @A!V], //T!X[@name!N].
X[S!V] :- //water[@type!T and @name!N and S!V], //T!X[@name!N].

yielding, e.g.,
<river name=“Mississippi” . . .> . . .</river> and <sea name=“North Sea” . . . > . . .</sea>

4.3 Semantics of XPathLog Programs

An XPathLog program is a declarative speci�cation how to create a set of XML documents

from one or more input documents. The formal semantics of XPathLog programs is de�ned

by bottom-up evaluation based on a TP operator similar to Datalog. Thus, the semantics co-

incides with the usual understanding of a stepwise process. Additionally, an intuitive meaning

9

of negation and other nonmonotonic features can easily be expressed by user-de�ned strati�-

cation. Similar to XSLT, the language is also understandable without theoretical knowledge

about Logic Programming, simply from the understanding of rule-based manipulation of XML

structures.

5 Data Integration: Handling Multiple XML Trees

The internal database is not intended to represent \the XML document", but a database
where XML documents may be de�ned as \views" { some of the views are the original XML

trees. In general, an X-structure may represent several trees which may be overlapping, i.e.,

subtrees can belong to several tree views. In the following, we focus on the modeling aspect

of multiple trees for data restructuring and integration. The presented strategies show the

exibility of the XPath-Logic data model.

5.1 Tree Operations

Projection by Signature. In XPathLog, a projection is speci�ed by a root node and a signature
(i.e., a description which subelements and attributes belong to the view).

Generating an Isolated Result Tree. Projection is only suitable if a property should be han-

dled homogeneously for all elements in the tree. The \opposite" strategy is to create the

result tree completely from scratch by collecting nodes (in the extreme case, only literals, i.e.

attribute values and text contents) and structuring them by creating new elements and subele-

ment relationships. Building a separate tree is the recommended strategy if the structure of

the result is very di�erent from the original tree.

Generating a Result Tree by Selecting and Linking Subtrees. As a compromise between the

above \extreme" strategies, a result tree can be created by linking subtrees of the original doc-

ument to it, extending them appropriately, and projecting the result. By \reusing" subtrees,

this strategy needs much less storage (and much less copying operations) than generating a

completely new tree. Additionally, the linked and updated elements can be part of multiple

views.

Namespaced Input and Multiple Input Trees. Namespaces can be used for distinguishing ele-

ments originating from di�erent sources. This allows to distinguish di�erent source trees (even

when elements of di�erent trees are fused (see below) during integration) and also possibly

generating several result trees as views on the internal database. When integrating multiple

input trees, namespaces are associated with groups of documents. Documents which seman-

tically belong together and use the same DTD also share the same namespace. The actual

decision depends on the situation, e.g., if the task consists of combining consistent sources

describing di�erent but overlapping application domains (e.g., a ight database and hotel

bookings), or combining sources containing possible inconsistencies on the same application

domain (e.g., integrating catalogs from di�erent suppliers).

5.2 Merging and Fusing Operations

The edge-labeled navigation graph model with names as full citizens of the modeling allows

to augment the above operations which special integration features on multiple overlapping
trees. The integration process starts with parsing all source trees augmented with suitable

namespaces. Then, the result tree is constructed based on nodes and literals of these trees

by the following operations:

10

1. Synonyms: identifying and renaming properties

2. Element fusion: identifying elements in di�erent sources which represent the same object

in the application domain.

3. Linking and Collecting: elements and tree fragments are linked together to de�ne a result

tree view.

Synonyms. In contrast to the pure DOM model, the names are also elements of the universe

which can be bound to variables, used in predicates, and especially equated with other names

and synonyms. The latter proves very useful in data integration: When elements from a

source are integrated into the result tree, in general also some of their properties should also

completely become properties of the result view.

Here, synonyms are an eÆcient means for taking a whole property from a source tree (and

namespace) to the result tree: By equating

namespace:name1 = name2.
the property name2 is de�ned to have the same extension as the original property namespace:name1.
Note that this does not introduce new children or attribute nodes, or even relationships, but

\only" de�nes an alternative access path.

Using this strategy, the internal database can be seen as a \two-level" model: the source(s)

provide tree structures which may be used. The result views are then de�ned using parts of

this structure, and extending it. In the following, the strategy is applied to multiple input

trees.

Fusing Elements and Subtrees. Fusing elements which represent the same real-world entity

from di�erent data sources into a uni�ed element is an important task in information inte-

gration. The result

1. is still an element of both source trees, i.e., positive queries against the original tree using

the original namespace still yield at least the original answers,

2. collects the attributes of both original elements,

3. collects the subelements of both original elements.

(1) is easily satis�able in XPathLog by adding appropriate links to the navigation graph.

(2) does also not cause any problems: if the original elements use di�erent namespaces, the

attributes are simply collected, otherwise for the attributes which are present for both original

elements, their values are accumulated. Attributes are not ordered, and also the values of

multivalued attributes are not ordered. Only (3) needs a further speci�cation, how the order

of subelements is dealt with. Regarding the problem from the database point of view, this

aspect can be ignored, accepting any kind of union of two lists.

Example 8 (Integration: Object Fusion) Consider data sources with namespaces as shown in Fig-
ure 1. Both describe countries, where cia contains information about name, area, population and
capital, and gs contains information about cities. An obvious and typical integration step is to unify
the countries in the cia tree with the countries in the gs tree and link them to the result tree root node:

result[country!C], C1 = C2 :-
cia/cia:country!C1[@cia:name!N], gs/gs:country!C2[@gs:name!N].

The above rule makes the fused country a child of the result node: For every country cwhich is present
in both databases (there are some cia “countries” which are not actual countries but territories,
sometimes even unpopulated), the country elements representing c in cia and gs are identified and the

11

result is then an element of three trees: cia, gs, and result (cf. Figure 2). The example is continued
below.

The resulting elements are linked to the result tree, and the properties which should be

contained in the result view have to be de�ned. This can be done either by introducing a

synonym in the result namespace for a property in one of the source namespaces, or by adding

appropriate links parallel to the already existing links (if a property is copied only for some

of its instances).

Example 9 (Integration: Synonyms)
Consider the situation obtained in Example 8. After defining the synonyms

cia:name = name. gs:city = city. gs:text() = text().
cia:area = area. gs:name = name.
cia:population = population. gs:population = population.

the result tree fragment as given in Figure 2 is obtained. Adding the capital links with

C[@capital!City] :-
result/country!C[@cia:capital!Name and city!City[name/text()=Name]].

completes this integration step.

cia gs

cia-germany
@cia:name=“Germany”
@cia:area=356910
@cia:population=83536115
@cia:capital=“Berlin”

gs-germany @gs:name=“Germany”

berlin hamburg

bln-name bln-pop h-name h-pop

“Berlin” 3472009 “Hamburg” 1705872

cia:country gs:country

gs:city
gs:city

gs:name gs:population gs:name gs:population

gs:text() gs:text() gs:text() gs:text()

Figure 1: Element fusion – before

The above strategies of element fusion, linking, and synonyms allow for powerful integration

concepts for generating a result tree (or even several result trees) from a set of sources. When

the integration and restructuring process is completed, projections are used to de�ne result
views of the internal database.

A crucial feature of a data integration language is that these tasks can be speci�ed in an

intuitive, understandable way, and that the language is powerful enough to allow for short

and concise statements. The DOM model is not suitable for such operations:

12

cia result gs

cia-germany
@name=“Germany”
@area=356910
@population=83536115
@cia:capital=“Berlin”
capital=�

berlin hamburg

bln-name bln-pop h-name h-pop

“Berlin” 3472009 “Hamburg” 1705872

cia:country country gs:country

city city

name population name population

text() text() text() text()

Figure 2: Element fusion – after

� every element can only have one unique parent, thus there is no way to de�ne views as

\overlays" on the source trees,

� every element has a unique name. Thus, expecially synonyms (which provide a simple,

but powerful means) are not supported.

The edge-labeled data model underlying the present approach which also makes names �rst-

class citizens of the model (and the language, respectively), supports data integration by

equating on di�erent levels:

� by equating elements, which represent the same real-world entity in di�erent sources (\fus-
ing" objects), these can be made a single element in the internal database, and

� by equating names, synonyms for properties can be de�ned which allows for an eÆcient

integration of properties from several original namespaces.

The above operations and strategies are described in detail in [May01b] and have been suc-

cessfully applied in the MONDIAL case study [May01a].

6 Advanced Integration Issues

In general, metadata is used for data integration, either merely based on schema informa-

tion, e.g, in heterogeneous databases and distributed databases (projects such as TSIMMIS

[GMPQ+97]), or also on ontologies which can be seen as databases on meta-data, giving hints

how application-semantical concepts are related (e.g., InfoSleuth [BBB+97], InformationMan-

ifold [LSK95], or OBSERVER [MKSI96]). Such information can easily be added to the internal

database in case that it is available in XML format.

For representing metadata, XML provides the concepts of DTDs and XML Schema

[XML99]. DTDs can be transformed into an internal signature representation. Neverthe-

less, the DTD data does not completely become part of the XML database.

Instead, XML Schema documents are valid XML instances, thus they can be mapped

directly into XML trees in the database, and associated with an entry constant. Then, the

13

integration rules can homogeneously use the data trees and the metadata trees.

Example 10 (Combining Data and Metadata Trees)
Consider the following XML Schema specification of the cia source:

<schema xmlns =’http://www.w3.org/1999/XMLSchema’ ...>
<complexType name=’cia’>

<element name=’continent’ type=’continent T’ minOccurs=’1’ maxOccurs=’*’/>
<element name=’country’ type=’country T’ minOccurs=’1’ maxOccurs=’*’/>

</complexType>
<complexType name=’continent T’ > . . . </complexType>
<complexType name=’country T’>

<attribute name=’name’ type=’CDATA’ use=’required’/>
<attribute name=’continent’ type=’IDREF’ use=’required’/>
:
<element name=’borders’ minOccurs=’0’ maxOccurs=’*’ >
<complexType base=’string’ derivedBy=’extension’>
<attribute name=’country’ type=’IDREF’ use=’required’/>

</complexType>
</element>

</complexType>

After adding this XML tree to the database under the constant ciaSchema, we can, e.g., validate the
instance wrt. the schema, or check which are the target types of reference attributes and add them to
the XML Schema tree:

A[@targetElements!TTS] :-
ciaSchema//complexType/element[@name!ENS and @type!ETS],
ciaSchema//complexType[@name!ETS]/attribute!A[@name!ANS and @type=“IDREF”],
% now ANS is an IDREF attribute name of elements with name ENS,
string2Object(ENS, EN), string2Object(ETS,ET), string2Object(ANS,AN),
% two-way built-in mapping predicate, e.g., string2Object(“country”,country) holds
cia//EN[@AN!Target], cia//TargetType!Target, string2Object(TTS, TargetType).

The above extend the internal representation of the ciaSchema tree:
<complexType name=’country T’>

<attribute name=’continent’ type=’IDREF’ target=’continent’ />

:
<element name=’borders’ . . . >
<complexType . . . >
<attribute name=’country’ type=’IDREF’ target=’country’ />

</complexType>
</element>

</complexType>

Similarly, e.g., links between elements and schema elements representing element types can

be added to the database.

6.1 Ontologies

Ontologies which are accessible in XML format can also be added as XML trees to the database

in order to guide the integration process. Then, rules can be speci�ed which use (i) data,

14

(ii) metadata like XML Schema, and (iii) additional ontology databases. Then, XPathLog

rules can be used for reasoning on the meta-level, and then these results can be exploited for

integrating the data given by the instances:

� Metadata + ontology: search for related concepts in di�erent data sources, and identify

concept overlappings and disjoint parts which extend each other.

� Data + results from above + graph matching algorithms: identify data overlappings (e.g.,

in a database on cities in european countries, and a database on economics in the G7

countries) and use them for integrating databases, also using analogy reasoning.

7 Related Work and Conclusion

Several XML querying and transformation languages have already been mentioned in the

introduction. XPath provides the basis for the transformation language XSLT, which is {

similar to XPathLog { rule-based, but following a functional idea. XML-QL [DFF+99] is

another querying/transformation language based on matching of XML-style patterns. QUILT

[CRF00] is a recent proposal for a comprehensive XML query language which also directly

produces XML output. XML Data integration in an XML-QL-based environment is described

[BGL+99]. The above languages are also declarative and in some sense rule-based. None of

these languages allows for updating a database. They do also not provide variables at name

positions, which are crucial for metadata-driven data integration. A proposal for updating

XML has been presented in [TIHW01]. Since it is based on a single-parent model (according

to the XML Query Data Model), it does not allow for re-linking elements (but requires a

copying of subtrees which causes severe problems with maintenance of reference attributes).

Other approaches to integration of semi-structured data, especially focusing on semi-

structured data as databases (in contrast to documents) are OEM/Tsimmis [GMPQ+97],

STRUDEL [FFLS97], and F-Logic [KLW95, LHL+98], using semi-structured data models of

the respective languages (in pre-XML times) in combination with rule-based languages.

Conclusion. To our knowledge, XPathLog is the �rst implemented, declarative, native XML

language which allows for view de�nition and updates. XPathLog is completely XPath-

based, ensuring that its declarative semantics is well understood from the XML perspective.

Especially the nature of rule based bottom-up programming is easily understandable for XSLT

practitioners, providing even more functionality. We expect that XPathLog is especially well-

suited for data integration where expressive languages are needed for declaratively specifying

powerful strategies, ranging over data, metadata, and meta-metadata. XPathLog has been

implemented in the LOPiX system [LoP].

References

[BBB+97] R. Bayardo, W. Bohrer, R. Brice, A. Cichocki, G. Fowler, A. Helal, V. Kashyap, T. Ksiezyk,
G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and
D. Woelk. InfoSleuth: Agent-Based Semantic Integration of Information in Open and Dynamic
Environments. In ACM Intl. Conference on Management of Data (SIGMOD), 1997.

[BGL+99] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, P. Velikhov, and V. Chu.
XML-Based Information Mediation with MIX. In ACM Intl. Conference on Management of Data
(SIGMOD), 1999.

[CIA] CIA World Factbook. http://www.odci.gov/cia/publications/.

15

[CRF00] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for Heterogeneous
Data Sources. In WebDB 2000, pp. 53–62, 2000.

[DFF+99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query Language for
XML. In 8th. WWW Conference. W3C, 1999. World Wide Web Consortium Technical Report,
www.w3.org/TR/NOTE-xml-ql.

[FFLS97] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for a Web-Site Manage-
ment System. SIGMOD Record, 26(3):4–11, 1997.

[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, V. Vassa-
los, and J. Widom. The TSIMMIS Approach to Mediation: Data Models and Languages. Journal
of Intelligent Information Systems, 8(2), 1997.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of the ACM, 42(4):741–843, July 1995.

[LHL+98] B. Ludäscher, R. Himmeröder, G. Lausen, W. May, and C. Schlepphorst. Managing Semistruc-
tured Data with FLORID: A Deductive Object-Oriented Perspective. Information Systems,
23(8):589–612, 1998.

[LoP] The LOPiX System. http://www.informatik.uni-freiburg.de/˜may/lopix/.

[LSK95] A. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in Global Information
Systems. Journal of Intelligent Information Systems, 2(5), 1995.

[LSS96] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. SchemaSQL – A Language for Interop-
erability in Relational Multi-Database Systems. In Intl. Conference on Very Large Data Bases
(VLDB), pp. 239–250, 1996.

[May01a] W. May. Information Integration in XML: The MONDIAL Case Study. Technical report,
2001. Available from http://www.informatik.uni-freiburg.de/˜may/lopix/
lopix-mondial.html.

[May01b] W. May. XPath-Logic and XPathLog: A Logic-Based Approach for Declarative XML Data
Manipulation. Technical report, Universität Freiburg, 2001. Available from http://www.
informatik.uni-freiburg.de/˜may/lopix/.

[MKSI96] E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An approach for query
processing in global information systems based on interoperation across pre-existing ontologies.
In International Conference on Cooperative Information Systems (CoopIS ‘96), 1996.

[TIHW01] I. Tatarinov, Z. G. Ives, A. Halevy, and D. Weld. Updating XML. In ACM Symposium on
Principles of Database Systems (PODS), 2001.

[Wad99] P. Wadler. Two semantics for XPath. 1999. http://www.cs.bell-labs.com/who/
wadler/topics/xml.html.

[XML99] XML Schema Part 2: Datatypes. http://www.w3.org/TR/xmlschema-2, 1999.

[XMQ01] XML Query Data Model. http://www.w3.org/TR/query-datamodel, 2001.

[XPa99] XML Path Language (XPath). http://www.w3.org/TR/xpath, 1999.

[XQu01] XQuery: A Query Language for XML. http://www.w3.org/TR/xquery, 2001.

[XSL99] XSL Transformations (XSLT). http://www.w3.org/TR/xslt, 1999.

16

