
	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

1	

	
OCPP	Implementation	Guide	 	
Protocol	Buffers	&	MQTT	 	
OCPP应用指南	

基于 Protocol	Buffer和 MQTT技术	

	

	

	

	

Draft	v0.3	

2016/11/29	

	
copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

All	rights	reserved.	This	document	 is	protected	by	 international	copyright	 law	and	

may	 not	 be	 reprinted,	 reproduced,	 copied	 or	 utilized	 in	 whole	 or	 in	 part	 by	 any	

means	 including	 electronic,	mechanical,	 or	 other	means	without	 the	prior	written	

consent	of	Chargerlink,	Inc.	 	

	 	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

2	

1. Contributors	

The	following	companies	&	people	have	contributed	to	the	OCPP	Implementation	

Guide	-	Protocol	Buffer	&	MQTT.	 	

Company	(In	alphabetic	order)	 Name	

Chargerlink,	Inc.	 Jianping	(Japy)	Yuan,	Sibo	Li	

	 	

2. Introduction	

2.1. Purpose	of	this	documents	

The	purpose	of	this	document	is	to	give	reader	the	information	required	to	create	a	

correct	interoperable	OCPP	Protocol	Buffer	and	MQTT	implementation.	 	

2.2. Intended	Audience	

This	document	is	intended	for	developers	looking	to	understand	and/or	implement	

OCPP	Protocol	Buffers	&	MQTT	in	a	correct	and	interoperable	way.	Rudimentary	

knowledge	of	implementing	web	services	on	a	server	or	embedded	device	is	

assumed.	 	

2.3. Protocol	Buffers	and	MQTT	

Protobuff	stands	for	Protocol	Buffers.	Protocol	Buffers	is	the	Google’s	

language-neutral,	platform-neutral,	extensible	mechanism	for	serializing	structured	

data.	It	has	been	used	in	internal	projects	since	2001	and	went	public	in	2008.	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

3	

MQTT	stands	for	MQ	Telemetry	Transport.	It	was	invented	by	Dr	Andy	

Stanford-Clark	of	IBM	and	Arlen	Nipper	of	Arcom	in	1999.	MQTT	is	“A	light	weight	

event	and	message	oriented	protocol	allowing	devices	to	asynchronously	

communicate	efficiently	across	constrained	networks	to	remote	systems.”	In	this	

document,	the	implementation	of	MQTT	is	based	on	version	3.1	specifications.	

2.4. Conventions	

The	key	words	“MUST”,	“MUST	NOT”,	“REQUIRED”,	“SHALL”,	“SHALL	NOT”,	

“SHOULD”,	“SHOULD	NOT”,	“RECOMMENDED”,	“MAY”,	and	“OPTIONAL”	in	this	

document	are	to	be	interpreted	as	described	in	[RFC2119].	 	

2.5. Definition	&	Abbreviations	

PROTOBUF	 Protocol	Buffers	

MQTT	 MQ	Telemetry	Transport	

RFC	 Request	for	Comments	

RPC	 Remote	procedure	call	 	

CP	 Charge	Point	

CPO	 Charge	Point	Operator	

CS	 Central	System	

OCPP	 Open	Charge	Point	Protocol	

2.6. Reference	

[RFC2119]	 “Key	words	 for	 use	 in	 RFCs	 to	 Indicate	 Requirement	 Levels”.	 S.	

Bradner.	March	1997.	http://www.ietf.org/rfc/rfc2119.txt	 	

[MQTT	3.1.1]	 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.

html	

[Protobuf]	 https://developers.google.com/protocol-buffers/	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

4	

3. Benefits	&	Issues	

Protocol	Buffer	 is	 used	 to	 serialize	messages	 and	 reduce	 the	bandwidth	 cost.	And	

utilizing	 technology	 like	 MQTT	 allows	 OCPP	 more	 focus	 on	 the	 service-oriented	

logics	and	leaves	the	work	for	networks	communication	to	MQTT.	

3.1. Protocol	Buffer	

There	are	several	benefits	Protocol	Buffer	provides:	

• Data	 Compression	 Rate:	 In	 general	 because	 the	 data	 structure	 was	

determined	 and	 stored	 in	 separate	 proto	 file.	 The	 raw	 data	 will	 reduce	

normally	enormously	from	original	data	comparing	with	JSON	implementation.	

• Backward	 Compatibility:	 Numbered	 fields	 in	 proto	 files	 obviate	 the	

requirement	 for	version	checks,	which	avoids	complicated	 logics	and	code	for	

versions.	You	can	easily	maintain	different	versions	of	schema	at	the	same	time,	

as	far	as	you	don’t	reuse	the	same	number	for	value	fields.	

3.2. MQTT	

MQTT	has	many	features	and	advantages	including:	

• Push-only	 communications:	 Compare	 with	 HTTP,	 this	 mechanism	 generates	

less	latency	time	in	processing.	

• Bitwise	header	and	low	bandwidth	cost	comparing	with	HTTP	

• Publish	 /	 Subscribe	 messaging	 principals,	 which	 allows	 Charge	 Points	 to	

multiple	backend	systems	easily.	

• It	 defines	 different	 level	 of	QoS	 (Quality	 of	 Service)	 to	 ensure	 the	 delivery	 of	

messages.	

• The	 feature	 of	 “Retained	 Messages”	 and	 “Last	 Will	 Testament”	 lowers	 the	

power	consumption	for	maintaining	connection	sessions	for	IoT	networks.	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

5	

4. Connection	

We	use	MQTT	for	network	connection,	which	is	based	on	TCP/IP.	It	is	recommended	

to	choose	broker	software	supporting	MQTT	later	than	3.1.	After	set	up	the	MQTT	

server,	we	need	to	configure	both	Charge	Points	and	Central	System	as	MQTT	clients.	

MQTT	implementation	is	based	on	Publisher/Subscriber	model.	All	OCPP	messages	

are	 posted	 into	 MQTT	 topics,	 and	 message	 receivers	 need	 to	 subscribe	 to	 the	

appropriate	topics.	

4.1. Network	Connection	

To	 successfully	 establish	 network	 connection,	 the	 MQTT	 clients	 need	 to	 provide	

several	parameters	to	server:	

Table	1	Connection	Parameters	

Parameter	 Type	 Description	

CLEAN_SESSION	 Bool	 To	keep	session	on	cloud	

CLIENT_ID	 String	 Id	of	Client,	including	CPs	and	CS	

USERNAME	 String	 Username	need	to	be	unique	within	same	network	

PASSWORD	 String	 Token	for	login	verification	

4.2. CONNECT	and	CONNACK	

After	 a	Network	Connection	 is	 established	by	 a	MQTT	Client	 to	 a	 Server,	 the	 first	

Packet	sent	from	Client	to	Server	MUST	be	a	CONNECT	Packet.	For	different	MQTT	

client,	 the	 response	 might	 different.	 But	 all	 of	 them	 will	 return	 CONNACK.	 The	

variable	header	of	CONNACK	package	contains	Connect	Return	Code	as	following:	

	 	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

6	

Table	2	Connect	Return	Code	Values	

Value	 Return	Code	Response	 Description	

0	 0x00	Connection	Accepted	 Connection	accepted	

1	 0x01	 Connection	 Refused,	

unacceptable	 protocol	

version	

The	 Server	 does	 not	 support	 the	 level	 of	

the	 MQTT	 protocol	 requested	 by	 the	

Client	

2	 0x02	 Connection	 Refused,	

identifier	rejected	

The	Client	 identifier	 is	 correct	UTF-8	but	

not	allowed	by	the	Server	

3	 0x03	 Connection	 Refused,	

Server	unavailable	

The	Network	 Connection	 has	 been	made	

but	the	MQTT	service	is	unavailable	

4	 0x04	 Connection	 Refused,	

bad	user	name	or	password	

The	data	in	the	user	name	or	password	is	

malformed	

5	 0x05	 Connection	 Refused,	

not	authorized	

The	Client	is	not	authorized	to	connect	

6-255	 		 Reserved	for	future	use	

4.3. KeepAlive	

MQTT	is	based	on	TCP/IP.	MQTT	provides	KeepAlive	function	to	solve	sync	problem	

between	Server	and	Client.	In	MQTT	3.1	specification,	it	 is	the	responsibility	of	the	

Client	 to	 ensure	 that	 the	 interval	 between	 Control	 Packets	 being	 sent	 does	 not	

exceed	 the	Keep	Alive	value.	 In	 the	absence	of	 sending	any	other	Control	Packets,	

the	 Client	 MUST	 send	 a	 PINGREQ	 Packet.	 After	 receiving	 a	 PINGREQ,	 the	 broker	

must	reply	with	a	PINGRESP	package.	Both	PINGREQ	and	PINGRESP	don’t	contain	

any	payload.	If	a	client	doesn’t	send	PINGREQ	or	any	other	message	in	one	and	half	

time	of	the	KeepAlive	interval,	the	broker	must	disconnect	it.	

4.4. MQTT	Topics	

Based	on	 the	message	direction,	 there	 are	 two	 types	of	OCPP	 topics:	 the	message	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

7	

sent	 from	 Charge	 Point	 to	 Central	 System,	 and	 the	 message	 sent	 from	 Central	

System	 to	 Charge	 Point.	 To	 support	 this	 feature,	 we	 defined	 two	 types	 of	 MQTT	

topics.	 It	 is	 recommended	 to	 define	 3	 levels	 of	 topics,	 though	 different	 CPOs	may	

choose	more	sophisticated	structure	based	on	their	network	topology.	

Table	3	MQTT	Topics	 	

Publisher	 Subscriber	 Topic	

CP	 CS	 /OCPP/CP/${ChargePoint_ID}	

CS	 CP	 /OCPP/CS/${ChargePoint_ID}	

• Message	from	Charge	Point	

The	message	will	be	posted	into	topic	such	as	“/OCPP/CP/CP0001”,	the	first	level	of	

the	path	denote	 the	 type	of	 sender	as	Charge	Point.	The	second	 level	 includes	 the	

unique	identification	for	Charge	Point.	Meanwhile	the	Central	System	is	subscribed	

to	the	same	topic,	and	processes	the	relevant	message	after	it	was	published.	

• Message	from	Central	System	

The	message	will	be	posted	into	topic	such	as	“/OCPP/CS/CP0001”,	the	first	level	of	

the	path	denote	the	type	of	sender	as	Central	System.	The	second	level	includes	the	

unique	identification	for	Charge	Point,	 the	receiver.	Meanwhile	the	Charge	Point	 is	

subscribed	 to	 the	 same	 topic,	 and	 processes	 the	 relevant	 message	 after	 it	 was	

published.	

4.5. Security	

Since	MQTT	is	based	on	TCP/IP,	TLS/SSL	is	used	to	authenticate	servers	and	clients	

and	then	used	to	encrypt	messages	between	the	authenticated	parties.	

Transport	 Layer	 Security	 (TLS)	 and	 its	 predecessor,	 Secure	 Sockets	 Layer	 (SSL),	

both	 frequently	 referred	 to	 as	 "SSL",	 are	 cryptographic	 protocols	 that	 provide	

communications	 security	 over	 a	 computer	network.	The	Transport	 Layer	 Security	

protocol	 aims	 primarily	 to	 provide	 privacy	 and	 data	 integrity	 between	 two	

communicating	computer	applications.	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

8	

5. RPC	Framework	

5.1. Syntax	File	

To	support	OCPP	protobuf	Implementation	work,	Charge	points	and	central	systems	

should	 agree	on	 consistent	 .proto	 files,	which	defined	 the	 syntax	of	messages	 and	

data.	 Consistent	 means	 all	 definition	 should	 not	 have	 any	 conflicted	 name	 or	

sequence.	 The	 syntax	 file	 shall	 include	 details	 for	 supporting	 messages	 and	

DataTypes.	 It	 is	 also	 recommended	 to	 include	 corresponding	 OCPP	 version	

information	in	the	protocol	buffer	file.	

	

Based	 on	 consistent	 syntax	 files,	 the	 sender	 of	 the	message	 can	 serialize	message	

information	from	a	structured	data	into	protocol	butter	message	flow,	and	then	the	

receiver	would	de-serialize	 it	afterwards.	The	data	 format	before	serialization	and	

after	de-serialization	depends	on	the	local	operating	system.	

	

In	general,	 the	syntax	 file	will	 include	a	base	class	 for	message,	 the	MessagesType	

enumeration	 for	 locally	 supported	 messages	 types	 by	 Charge	 Point	 or	 Central	

System,	 and	 then	 the	 definitions	 for	 locally	 supported	 Messages	 and	 their	 data	

types.	 	 	

5.2. Base	Class	

Message	Class	is	the	parent	class	for	all	OCPP	message	class.	It	specifies	data	fields	

that	may	be	 included:	Message	Type	 ID,	Unique	 ID,	 Error	Code,	 Error	Description	

and	 Payload	 information,	 The	 Payload	 fields	 include	 the	 actual	 OCPP	 information	

itself.	 For	 protocol	 buffer	 implementation,	 the	 sequence	 for	 each	 data	 field	 is	

required	and	need	to	be	consistent	through	out	all	CPs	and	CS.	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

9	

Table	4	Class	Definition	for	Message	

Field	 Type	 Seq	 Required/	

Optional	

Description	

MessageTypeId	 MessageType	 1	 R	 Define	 the	 type	 of	 Message,	

whether	 it	 is	Call,	CallResult	

or	CallError.	 	

UniqueId	 String	 2	 R	 This	must	be	the	exact	same	

id	 that	 is	 in	 the	 call	 request	

so	 that	 the	 recipient	 can	

match	request	and	result.	 	

Action	 String	 3	 O	 The	Message	Name	of	OCPP.	

E.g.	Authorize	

ErrorCode	 ErrorType	 4	 O	 The	string	must	contain	one	

from	ErrorType	Table.	

ErrorDescription	 String	 5	 O	 Detailed	Error	information	 	

Payload	 Bytes	 6	 O	 Payload	 field	 contains	 the	

serialized	 strings	 of	 bytes	

for	protobuf	format	of	OCPP	

message.	

5.3. Messages	Type	and	Synchronicity	 	

Basically	 what	 we	 need	 is	 very	 simple:	 we	 need	 to	 send	 a	 message	 (CALL)	 and	

receive	 a	 reply	 (CALLRESULT)	 or	 an	 explanation	 why	 the	 message	 could	 not	 be	

handled	properly	(CALLERROR).	For	possible	future	compatibility	we	will	keep	the	

numbering	of	these	message	in	sync	with	WAMP.	Our	actual	OCPP	message	will	be	

put	into	a	wrapper	that	at	least	contains	the	type	of	message,	a	unique	message	ID	

and	the	payload,	the	OCPP	message	itself.	 	

	 	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

10	

Table	5	MessageType	Definition	

MessageType	 MessageTypeId	 Direction	

CALL	 2	 Client-to-Server	

CALLRESULT	 3	 Server-to-Client	

CALLERROR	 4	 Server-to-Client	

A	Charge	Point	or	Central	System	SHOULD	NOT	send	a	CALL	message	to	the	other	

party	unless	all	 the	CALL	messages	 it	sent	before	have	been	responded	to	or	have	

timed	 out.	 A	 CALL	 message	 has	 been	 responded	 to	 when	 a	 CALLERROR	 or	

CALLRESULT	message	has	been	received	with	the	message	ID	of	the	CALL	message.	 	

A	CALL	message	has	timed	out	when:	 	

•	It	has	not	been	responded	to,	and		

•	an	implementation-dependent	timeout	interval	has	elapsed	since	the	message	was	

sent.	 	

	

Implementations	are	free	to	choose	this	timeout	interval.	It	is	RECOMMENDED	that	

they	 take	 into	 account	 the	 kind	 of	 network	 used	 to	 communicate	 with	 the	 other	

party.	 Mobile	 networks	 typically	 have	 much	 longer	 worst-case	 round-trip	 times	

than	fixed	lines.	 	

The	above	requirements	do	not	rule	out	that	a	Charge	Point	or	Central	System	will	

receive	a	CALL	message	from	the	other	party	while	it	is	waiting	for	a	CALLERROR	or	

CALLRESULT.	Such	a	situation	 is	difficult	 to	prevent	because	CALL	messages	 from	

both	sides	can	always	cross	each	other.	 	

Table	6	Fields	for	Different	MessageTypes	

Field	 CALL	 CALLRESULT	 CALLERROR	

MessageTypeId	 Yes	 Yes	 Yes	

UniqueId	 Yes	 Yes	 Yes	

Action	 Yes	 No	 No	

ErrorCode	 No	 No	 Yes	

ErrorDescription	 No	 No	 Yes	

Payload	 Yes	 Yes	 No	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

11	

The	req	message	of	OCPP	is	wrapped	in	the	payload	of	CALL,	and	the	conf	message	

of	OCPP	is	wrapped	in	the	payload	of	CALLRESULT	after	proceed	successfully.	

Table	7	Example	of	Different	MessageTypes	

MessageTypes	 Example	

CALL	 MessageTypeId=2	

UniqueId=”12312313”	

Action=“StartTransaction“	

Payload	=	“…”	

CALLRESULT	 MessageTypeId=3	

UniqueId=”12312313”	

Payload	=	“…”	

CALLERROR	 MessageTypeId=4	

UniqueId=”12312313”	

ErrorCode	=	ProtocError	

ErrorDescription	=	“…”	

5.4. CallError	

We	only	use	CallError	in	two	situations:	 	

1)	An	 error	 occurred	during	 the	 transport	 of	 the	message.	 This	 can	be	 a	 network	

issue,	an	availability	of	service	issue,	etc.	 	

2)	The	call	is	received	but	the	content	of	the	call	does	not	meet	the	requirements	for	

a	 proper	 message.	 This	 could	 be	 incorrect	 syntax,	 missing	 mandatory	 fields,	 an	

existing	 call	 with	 the	 same	 unique	 identifier	 is	 being	 handled	 already,	 unique	

identifier	too	long,	etc.	 	

	 	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

12	

Table	8	Error	Codes	

Error	Code	 Description	

NotImplemented	 Requested	Action	is	not	known	by	receiver	 	

NotSupported	 Requested	Action	is	recognized	but	not	supported	by	

the	receiver	 	

InternalError	 An	internal	error	occurred	and	the	receiver	was	not	

able	to	process	the	requested	Action	successfully	 	

ProtocolError	 Payload	for	Action	is	incomplete	 	

SecurityError	 During	the	processing	of	Action	a	security	issue	

occurred	preventing	receiver	from	completing	the	

Action	successfully	 	

FormationViolation	 Payload	for	Action	is	syntactically	incorrect	or	not	

conform	the	PDU	structure	for	Action	 	

PropertyConstraintViolat

ion	

Payload	is	syntactically	correct	but	at	least	one	field	

contains	an	invalid	value	 	

OccurrenceConstraintVio

lation	

Payload	for	Action	is	syntactically	correct	but	at	least	

one	of	the	fields	violates	occurence	constraints	 	

TypeConstraintViolation	 Payload	for	Action	is	syntactically	correct	but	at	least	

one	of	the	fields	violates	data	type	constraints	(e.g.	

“somestring”:	12)	 	

GenericError	 Any	other	error	not	covered	by	the	previous	ones	 	

6. Examples	

The	Following	examples	are	excerpted	from	protocol	buffer	syntax	file.	 	

6.1. Base	Class	–	Message	

	

	



	

copyright	©	Chargerlink,	Inc.	2014,	2015,	2016	 	

13	

message	Messages	

{	

	 	 	 	 required	MessageType	MessageTypeId	=	1;	 	

	 	 	 	 required	string	UniqueId	=	2;	

	 	 	 	 optional	string	Action	 	 =	3;	 	

	 	 	 	 optional	ErrorType	ErrorCode	=	4;	

	 	 	 	 optional	string	ErrorDescription	=	5	

	 	 	 	 optional	bytes	Payload	=	6;	 	

}	

6.2. OCPP	Message	–	BootNotification	

message	BootNotification_req	

{	

	 	 	 	 optional	string	chargeBoxSerialNumber	=	1;	

	 	 	 	 optional	string	chargePointModel	=	2;	

	 	 	 	 optional	string	chargePointSerialNumber	=	3;	

	 	 	 	 optional	string	chargePointVendor	=	4;	

	 	 	 	 optional	string	firmwareVersion	=	5;	

	 	 	 	 optional	string	iccid	=	6;	

	 	 	 	 optional	string	imsi	=	7;	

	 	 	 	 optional	string	meterSerialNumber	=	8;	

	 	 	 	 optional	string	meterType	=	9;	

}	

message	BootNotification_conf	

{	

	 	 	 	 required	dateTime	currentTime;	

}	


