MISMO XML DTD Engineering Guidelines Draft Version 0.8

Architecture Workgroup

MISMO
July 7, 2000

MBA - MISMO

XML DTD

ENGINEERING GUIDELINES

(Draft)

Document Version

Document Date

ChangelList

0.1 Jan-28, 2000 ORIGINAL DOCUMENT (BIXBY).

0.2 Jan-30, 2000 Correct grammar, typos (Bixby).

0.3 Feb-02, 2000 Correct/clarify grammar. Add more examples (Bixby).

0.6 Apr-18-28, 2000 | Revamp with votes, amendments, and corrections from Architecture
workgroup (Minton)

0.7 Jun-8-15, 2000 Incorporate comments in from industry through 1.0 DTD release
(Minton)

0.8 July 7, 2000 Incorporate more comments from industry for 1.0 Final DTD release,

delete some extraneous information (Minton)

MISMO XML DTD Engineering Guidelines Draft Version 0.8

XML DTD DEVELOPMENT GUIDELINE

Draft Version: 0.8
July 7, 2000
Author: MISMO Architecture Workgroup

TABLE OF CONTENTS
[A O TSR 3
INTRODUGCTION ..ttt ettt ettt st st e st e s s teees s aeesbessbe e beeabeeabesbessbeesbe e beanteaaeesheesbeeabeeabeenbessbesbeesbeesbeesteensesneas 4
KEY DIFFERENCESBETWEEN X12 AND XML c.viitiiiiiie ettt sttt et s sbe e st stesnssnessaessnesbeenns 5
KA2 ADVANTAGEScuteiteeteeteetesttesteesteesteaasessssaeeaseeaseeabesabesabesssessaesbeesbeeabeansesasesassaaeeabeenbeenbesabesssesbeesbeesbeeseentesnees 5
KXIMIL ADVANTAGES ... uecctteteeteettesttesteesteesteaasessessessseaaseeasesasesasesssesteesbeesbeeaseassesasesassasesabeenbeenbesatesssesbeesbeesbeesenntesnees 5
MORTGAGE INDUSTRY XML ENGINEERING GUIDELINEScooecteeeeeecte ettt 6
DTD VS XML SCHEMA FORMAT ..ottt ettt et et eteesteeste e steeaesatesaeesbeaebeenbesabesssesbeesbeesbassbesnsesnsesanesseenseenns 7
XML DTD” SAMPLE ...ttt sttt ettt et e et e et e et e sbeesbeesbeebesasesaeesaeeebe e beenbeeabesabesbeesbeesbeebennnesnnes 7
“XML SCHEMA” SAMPLE ..ottt ettt te et s tte s teesbeesbeesbeeebesasesaeesaeesbeebesabesabesabesbeesbeesbeebenaresnnes 7
XML DATA” SAMPLE ..ottt ettt ettt et e et e s b e s b e e st e e st e e besatssaeesbeesbe e beeabeeabesbeesbessbeesbeeteannesnees 8
CBIZTALK” SAMPLE.......cticte ettt ettt ettt e ettt e et e satesbeesbeesbeesbeebesatssaessheeabe e beenbeeabesbtesbessbeesbeesteaneesnnes 8
ELEMENT AND ATTRIBUTE USAGE ..ottt ettt sttt st steestesas e s sbeesbeebeeabesatesssesbassbeesbesstesnessnnes 11
LS 00 A Y 0= TSP 11
F Lo LU (SN Y] o= USSR 12
ELEMENT AND ATTRIBUTE NAMING CONVENTIONS........ooiiiiiitieite ettt ettt srae st as e 16
Use Understandable EIEMENE NAIMES..........cviiviiie ettt sttt ste et st s eesaeesbeesbeebesabesasesbaesbeesbeessesnsesnnes 16
Derive Element Names from a Data MOOE]ooveoiieiiiciiciecie ettt sttt v st sbaesreesbe e beenesnnas 16
Use Standard Capitali Zation FOIMALScceieeierereseseseseeesseeeeseeseesee e sseseeseesesssessessessessessessssnsessessessensens 16
TS 007 0 0O o[o TSP 17
Use of Decimal Place INfOrMALiONcouiiiiiiiiiie ettt sttt ettt sbe et e ebesabesaaesbaesbeesbeebesnnesnnes 17
N [UTag! o1 g @) 01V =01 110] o [OOSR 17
USE STANDARD ACRONYMS, DO NOT USE ABBREVIATIONS.........ooi ittt ettt sttt 17
GENERAL APPROACH TO CREATING NAMESuuttiieiittieeeitieeeeeteeeeeteeeeeatteeesasseeasasseesaaassessaassesesassesesasssesssnssesesasenens 19
Class Words and Their XIML Data TYPESeeueeuereeierieriesie st siesee e seeee et stesaesse e eeeseessesbesbessesseensessensesaesaesnes 20
DATE AND TIME SPECIFICATION ADOPTIONuuiieiiitiieeeiieeeeiteeeeeatteeesaseeessseeesaassesssasssesssassssesassesesasssssssssssessassenans 22
A Summary of the International Standard Date and Time NOtatiON..........ccoeiereririeeie e 22
D (= 22
QLT =0 L SRS 23
THMIE ZONE ...ttt ettt et et e e st e e bt e be e be e teeabesbeesbeesbe e beeasesaeesaeeebe e beeabeeabeehsesbeesbeeabeesbesnsesasesaeeabeenbeenbeenresreenreens 24
EXTENDIBLE XML ARCHITECTURES......cittetttiiteieeiteesteesteeteestesssesseessesssesssesssesasssssssssssssssesssessesssessesssesssesssesssesnes 25
How architectural iNNEMTANCE WOTKSc.eicviiieieeeie ettt sttt ste et st s eesae e s beeebeebeeabesasesbeesbeesbeebesnresnnes 26
YT o =T = o= TSP 26
Recursive (0r “ Nested”) INNEMTTANCE.ciiieriee ettt s e e st s b e st ae e e aeseenbesbesne s 26
Overview of the overall MISMO information arChitECIUNE..........ccueeivieeieee ettt e re e eare s 27
OTHER XML ARCHITECTURE WORK GROUP TASKS......ooo ittt ettt sttt s s sve v 28

MISMO XML DTD Engineering Guidelines Draft Version 0.8

PREFACE

XML is not rocket science. The line below is an example of data in an XML
format.

< City>Washington</City>

There are brackets around each “ City” label. Thereisa forward slashiin the
second label. Why? Probably, so we can tell it apart from thefirst label. The
important point is that the data unambiguously says, “ Washington is a city” .

XML provides a framework for clearly describing data. When we exchange data
with our partners using the same framework, we call it a standard. When we
don't, then we call it complicated, confusing and unreliable, but we provide
more jobs for poor, starving software architects and consultants.

MISMO XML DTD Engineering Guidelines Draft Version 0.8

INTRODUCTION

The Extensible Markup Language (XML) is a set of rules for defining how documents and data are organi zed.
Computer data has normally been separate from its descriptive label's, which appeared in the data specification. For
example, atraditional X12 datarecord for Customer Relations Contact information can contain a person’s name,
phone number and email address, as shown in this sample record.

PER~CR~JOHN P DOE~TE~305-555-1212~FX~305-555-1213~EM~hel p@abc.com

The labels that describe the above data, plus the meaning of each data element are not in the datafileitself. An
XML representation of the above data would contain element names that clearly describe the data, in addition to the
dataitself.

<Cust oner Rel ati ons>
<Cont act >
<Nane>
<Last >DCE</ Last >
<Fi rst >JOHN</ Fi r st >
<M ddl e>P</ M ddI e>
</ Nanme>
<Phone>305- 555- 1212</ Phone>
<Fax>305- 555- 1213</ Fax>
<Emai | >hel p@bc. conx/ Emai | >
</ Cont act >
</ Cust oner Rel ati ons>

The XML representation of the data, while verbose, provides a clear picture of the data represented. This makes it
ideal for exchanging the data with other parties. Well...almost. We could a so depict the same contact information in
the following XML representation:

<Cust Rel at i onsCont act | nf 0>
<Nanme>JOHN P DOE</ Nane>
<PhoneNunm>305- 555- 1212</ PhoneNun®
<FaxNun>305- 555- 1213</ FaxNun®
<E- Mai | >hel p@bc. conx/ E- Mai | >

</ Cust Rel ati onsCont act | nf 0>

While the datais still the same, both the XML element names and the organization of the data have changed. The
power of XML isthat it allows two business partners to agree on a standard way of labeling element names and the
way those elements are organized. This power increases dramatically with the addition of each new trading partner.

The Mortgage Industry Standards Maintenance Organization (M1SMO), under the auspices of the Mortgage Bankers
Association (MBA), is the body that facilitates the creation and maintenance of the mortgage industry XML data
exchange standards. MISMO will define the XML element and attribute names that will represent the mortgage-
related data elements in a standard manner, and also define how the mortgage information is organized. This
document is avalid specification as set forth by the MISM O architectural workgroup for a set of guidelines to assist
in the development of XML file specifications for the mortgage industry.

It isvery important to emphasize to the readers of this document what we are standardizing. MISMO set out to
standardize |oan data sent between two organizations at apoint in time. This standard is intended to span multiple
transactions between trading partners. MISMO has not created a standard by which to archive loan data. Although
companies are free to archive the files as they are sent back and forth within the industry, the data points and
structures were not designed with archival in mind, rather, they were designed to be stateful data at an instance
between organizations when they needed to move data from one to the other.

MISMO XML DTD Engineering Guidelines Draft Version 0.8

KEY DIFFERENCES BETWEEN X12 AND XML

An important discussion point that has come up numerous timesin architectural discussions regarding MISMO, is
the differences between the X12 standardization effort and that of MISMO and its use of XML as the specification
format. While X12 and XML are basically different expressions of the same information, there are key differences
and advantages to each format as summarized below.

X12 Advantages

Smaller file size allows for faster transmission and more efficient storage.

Common Envelope Structure already exists for transmitting X 12 transactions between businesses.

XML Advantages

Files are human-readable — can be interpreted with only atext editor.

Each data element is preceded by an element name, which describes the data element in asimple
descriptive set of words.

There is much wider industry support for XML - Integration and conversion utilities are being
provided with web browsers, databases and operating systems. Thiswill make it easier and less
expensive for small to medium size businesses to import and export datain an XML format. The
Microsoft’s SQL 7.0 and Oracle8i databases have the native capability to read and generate XML data.
Microsoft Internet Explorer 4 and 5 have the ability to parse, validate and display XML data.

Toolsto convert XML datainto printed reports or web pages are readily available. Cascading Style
Sheets (CSS) are aready available in anumber of software packages for this purpose. Extensible Style
Language (XSL) is anew standard for converting XML datainto a variety of human-readable formats,
and isfar along in its devel opment.

XML ishy its designed for extensibility. Thus, it is possible to define aformat for the interchange of
data between trading partners, allow those users of the standard to extend it for their own use, while
preserving the property to normalize back to the standard if necessary. This allows those who are
working on the standardization effort to use data that are not part of the standard yet, and allows users
of the standard to add their own proprietary data to the exchange format and still be compliant to the
standard.

MISMO XML DTD Engineering Guidelines Draft Version 0.8

MORTGAGE INDUSTRY XML ENGINEERING GUIDELINES

Engineering guidelines provide a framework for developing a set of data structures that are similar in format, and
contain common syntax and structures. The XML Architecture Workgroup has been, and will continue to define the
guidelines that will be used for the mortgage industry XML data structures. The issues listed below are some of the
key areas to be discussed and approved by the XML Architecture Workgroup. Thislist will evolve as the process
moves forward.

DTD versus XML Schema Format For Defining Data

Element and Attribute Usage

Element and Attribute Naming Conventions

Tracking MISMO XML DTD Versions

Theuse of acronymsor abbreviationsin XML tag names

Date and Time data specification adoption

Test and QA/QC Release Guidelines

Other XML Architecture Workgroup Tasks

MISMO XML DTD Engineering Guidelines Draft Version 0.8

DTD vs XML SCHEMA FORMAT

Should MISMO adopt the DTD format or the XML Schema format? Before tackling that question, we will briefly
define what we mean by DTD or XML Schema. “DTD” is an acronym for Document Type Definition — a set of
rules for defining what a data set should contain, and how it is organized. Inthe XML 1.0 specification, DTD isa
specific format for defining an XML dataset. Several aternative formats or schemas for defining data sets have
emerged that are more precise than the XML DTD. One of the proposed alternativesto XML DTD iscaled “XML
Schema’. Othersare“XML Data’, “Biztalk” and “SOX” (Schema for Object-oriented XML).

Below are sample data definitions for asimple “NAME” record. It is made up of the elements “First”, “Middle”,
“Last” and “Generation”. The “Generation” element should only contain one of the following values - Jr, Sr, 11, 111,
and 1V. If you think about it, the previous two sentences are atype of “data definition” describing the elements that
are generally used for a person’s name.

We will not go into a detailed explanation of the different formatsin this document; there are plenty of books and
web sites available on the subject. The purpose of displaying them hereisto simply show what the different data
definition formats look like.

“XML DTD” SAMPLE

<l-- Nane.dtd - XM. 1.0 DID format -->

<! ELEMENT NAME (First, Mddle?, Last, Generation?)>

<! ELEMENT First (#PCDATA)>

<! ELEMENT M ddl e (#PCDATA)>

<! ELEMENT Last (#PCDATA)>

<! ELEMENT Generati on EMPTY>

<I ATTLI ST Generation generationType (Jr | Sr | I | IlI | 1V) #REQU RED>

“XML SCHEMA” SAMPLE

<l-- Nane.xsd - XM. Schena (XSDL) format -->
<?xm version ="1.0"?>

<schema nane = "Nane. xsd"
xmns = "http://ww. w3. org/ 1999/ 05/ 06- xm schema- 1/ struct ur es. xsd" >
<el ement Type nane = "NAME' nodel = "open">
<sequence>
<el ement TypeRef name = "First"/>
<el enent TypeRef nanme = "M ddl e" mi nCccur = "0" maxCccur = "1"/>
<el enent TypeRef nane = "Last"/>
<el ement TypeRef name = "Generation" mnCccur = "0" maxCccur = "1"/>
</ sequence>
</ el enent Type>
<el ement Type nanme = "First" nodel = "open">
<dat at ypeRef nanme = "string"/>
</ el enent Type>
<el ement Type nane = "M ddl e" nodel = "open">
<dat at ypeRef nanme = "string"/>
</ el enent Type>
<el ement Type nane = "Last" nodel = "open">
<dat at ypeRef nanme = "string"/>
</ el enent Type>
<el ement Type nanme = "Generation" nodel = "open">
<enpty/ >
<attrDecl name = "generationType" required = "true">

<dat at ypeRef name = "ENUMERATI ON'>
<enuner at i on>
<literal >Jr</literal >
<literal >Sr</literal >
<literal>lI</literal >
<literal>llI</literal >
<literal>IV</literal >

MISMO XML DTD Engineering Guidelines

Draft Version 0.8

</ enuner ati on>

</ dat at ypeRef >

</ attrDecl >
</ el enent Type>

<ATTRDECL NAME = " GENERATI ONTYPE"' REQUI RED = " TRUE">

<dat at ypeRef name = "ENUMERATI ON'>
<enuner ati on>

<literal >Jr</literal >
<literal >Sr</literal >
<literal>lI</literal >
<literal>llI</literal >
<literal>IV</literal >

</ enuner ati on>

</ dat at ypeRef >
</ attrDecl >
</ schema>

“XML DATA” SAMPLE

<l-- Nane.xdr - XM. Data format -->

<?xm version ="1.0"?>

<Schema nane = "Nane. xdr"
xm ns = "urn:schenas-m crosoft-com xn -data"
xm ns: dt = "urn:schemas-m crosoft-com dat at ypes" >
<El enent Type name = "NAME' content = "eltOnly" order = "seq">
<el enent type = "First"/>
<el ement type = "Mddle" minCccurs = "0" maxCccurs = "1"/>
<el ement type = "Last"/>
<el enent type = "Generation" mnCccurs = "0" maxCccurs = "1"/>
</ El enent Type>
<El ement Type nanme = "First" content = "textOnly"/>
<El enent Type name = "M ddl e" content = "textOnly"/>
<El enent Type name = "Last" content = "textOnly"/>
<El ement Type nane = "Generation" content = "enpty">
<AttributeType nane = "generationType" dt:type = "enuneration"
dt:values = "Jr Sr Il 11l IV' required = "yes"/>

<attribute typ
</ El ement Type>

</ SCHEMA>

“BIZTALK” SAMPLE

e

= "generationType"/>

<l-- NAME.BIZ - XM. BI ZTALK FRAMEWORK - - >

<?XM. VERSION ="1.0"?>

<SCHEMA NAME = "NAME. Bl Z2"

XMLNS = " URN: SCHEMAS- M CROSOFT- COM XM.- DATA"

XMLNS: DT = " URN: SCHEMAS- M CROSOFT- COM DATATYPES' >

<ELEMENTTYPE NAME = "NAME" CONTENT = "ELTONLY" ORDER = "SEQ'>

<ELEMENT TYPE

<ELEMENT TYPE =

<ELEMENT TYPE

<ELEMENT TYPE

"FI RST"/ >

"M DDLE" M NOCCURS = "0" MAXOCCURS = "1"/>

"LAST"/ >

" GENERATI ON' M NOCCURS = "0" MAXOCCURS = "1"/>

MISMO XML DTD Engineering Guidelines Draft Version 0.8

</ ELEMENTTYPE>

<ELEMENTTYPE NAME = "F| RST" CONTENT = "TEXTONLY"/>

<ELEMENTTYPE NAME = "M DDLE" CONTENT = "TEXTONLY"/>

<ELEMENTTYPE NAME

"LAST" CONTENT = "TEXTONLY"/>

<ELEMENTTYPE NAME

" GENERATI ON' CONTENT = "EMPTY">
<ATTRI BUTETYPE NAME = " GENERATI ONTYPE" DT: TYPE = " ENUMERATI ON'

DT: VALUES = "JR SR Il 111 IV'" REQU RED = "YES"/>
<ATTRI BUTE TYPE = " GENERATI ONTYPE"/ >

</ ELEMENTTYPE>

</SCHEMA>

MISMO XML DTD Engineering Guidelines Draft Version 0.8

THESE FOUR SAMPLE FORMATSARE DIFFERENT METHODS OF DEFINING THE SAME “NAME”
DATA. WHICH ONE(S) SHOULD THE MISMO ADOPT?

THE “XML DTD” FORMAT ISAN APPROVED STANDARD, BUT DOESNOT ALLOW FOR
PRECISE DEFINITION OF THE DATA ELEMENT SIZESOR FORMATS.

THE “XML DATA” AND “BIZTALK” ARE MICROSOFT PROPOSALSFOR A DATA
DEFINITION STANDARD.

THE “XML SCHEMA” FORMAT DOESPROVIDE THESE DESIRED FEATURES, BUT IT IS
NOT YET PART OF THE APPROVED XML STANDARD AND ISNOT FULLY SUPPORTED IN
THE CURRENT INTERNET BROWSERS AND DATA PARSERS.

Currently, the XML DTD format is the better method for describing mortgage industry data. It is an approved
industry standard that is widely supported in the XML tools and software available today. Asthe XML Schema and
other formats evolve, we could migrate or adopt ancther format. The Architecture Work Group voted on the use of
the DTD specification. Once the XML schema specification has been ratified as a W3C standard, the Architecture
Work Group plansto revisit thisissue. It will not impact the version 1.0 releases of the specification.

What is more important initially is that we agree on an overall XML Mortgage Industry data set structure, and the
element and attribute names that will be used. The DTD and XML Schema are smply different methods of
describing this structure. Once the data structure and element names are defined (in the Data Model and Data
Dictionary), it isfairly easy to convert thisinformation into aDTD format, XML Schema format or any of the other
data definition formats.

-10-

MISMO XML DTD Engineering Guidelines Draft Version 0.8

ELEMENT AND ATTRIBUTE USAGE

XML provides two types of structures to define data -- elements and attributes. There are no set XML rules for how
these two structures are to be used, but by defining guidelines for their use, MISMO can attain some degree of
commonality between its various data structures. The following are some proposed guidelines for using elements
versus attributes.

Elementstypically contain the actual text or data that you might see on a human-readable loan file or report.
Including the full text description in the element data eliminates the need to convert a code into text when preparing
a human-readabl e report or web page.

Attributes, on the other hand, provide more information about the element that it is included with, such as the
source of the data, the type of data, or coded values for the data. Y ou can specify an enumerated list of allowable
values for an attribute, which makes them handy for storing code sets for data such as account types, loan types, loan
purpose, amortization type, property type and so on. Storing codesin XML attributes, and storing text datain XML
elements, allows for easy integration into existing software systems, without the need for those systems to interpret
the text data.

Element Types
There are five types of XML elements commonly used in the Mortgage Industry DTDs.

Container Element — These elements simply contain other elements. Inthe NAME example used
earlier, “NAME” isthe Container Element for “First”, “Middle”, “Last” and “ Generation”.

<NANVE>

<Fi rst>John</First>

<M ddl e>L</ M ddl e>

<Last >Consuner </ Last >

<Ceneration generationType="Jr"/>
</ NAME>

Container elements cannot contain any text themselves. For example:

<NANVE>

JOHN A, JOHNSON

<SecondM ddl eNane>THOVAS</ SecondM dd| eNane>
</ NAMVE>

Date Element — These el ements hold date data, stored in aCCYY-MM-DD format as in the date,
2000-02-09. If thereisno “day” value for adate it will be stored inaCCYY-MM format asin the
date, 2000-02.

<l ntervi ewDat €>1999- 12-10</ | nt er vi ewDat e>

Date-Time Element — This element holds date and time data stored in aCCYY-MM-
DDTHH:MM:SS format. Note that the date and time are separated by the letter “T” (e.g. 1999-09-
01T13:45:03). The“seconds’ value may be omitted (e.g. 1999-09-01T13:45). Time values use
the “military format” (i.e. 13:00 = 1pm, 14:00 = 2pm, €tc.).

<Report Dat eTi ne>1999- 12- 04T10: 13</ Report Dat eTi ne>

Empty Element — Thisis a special type of XML element that contains only attributes. Empty
elements do not need a separate “end” tag, only a slash and a closing bracket as shown below. In

-11 -

MISMO XML DTD Engineering Guidelines Draft Version 0.8

this example, equi f ax="Yes” and experi an="Yes” arethe attributes of the empty
element, Reposi t ori esRequest ed.

<Reposi tori esRequest ed equi fax="Yes” experian="Yes"/>

Text Element — This element can hold a text value consisting of aword, phrase, sentence or
paragraph depending on its purpose. It could a so contain numeric values such as account
balances. A text element may also contain one or more attributes.

<Last Nane>Jones</ Last Nane>

NOTE: Aswe evolve to the XML Schema or other format, we will probably add other element
types that allow the data type to be defined more precisely.

Attribute Types
There are four types of XML attributes used in Mortgage Industry DTDs:

Enum Attribute — This type of attribute has an enumerated list of allowable values defined in the
DTD or Schema. When an Enum attribute isused in an XML datafile, only avalue defined in the
enumerated list may be used. Inthe Name DTD sample used earlier, thegener at i onType
attribute limits the valid options for the attribute value to “Jr”, “Sr”, “11”, “111” and “1V”. Any
other value would cause an error to be generated when the file is processed.

When gener at i onType isdefined inthe DTD it appears as shown below. Note the list of allowed values for
the attribute are enclosed within parenthesis.

<! ELEMENT Generati on EMPTY>
<I ATTLI ST Generation generationType (Jr | Sr | I | 1lI | 1V) #REQU RED>

ID Attribute— Each XML ID attribute value used in an XML data file must be unique. Inthe
XML Credit Report DTD, thecr edi t Recor dI DID attribute has a unique value that is not
duplicated. For example, the borrower’s Equifax credit file might haveacr edi t Recor dl D
attribute set to “EFX-1". The co-borrower’s Equifax credit file might be assigned a value of
“EFX-2" and so on. These ID attributes can be used along with IDREF attributes, to link liability,
public record, credit score and inquiry data to the specific repository bureau “credit file” that
provided the data.

<CREDI TFI LEVARI ATI ON credi t Recl D="EFX- 1" repositorySource="Equi fax">
<PARTY PartyType="Borrower">
<NAME>
<Fi r st >JERRY</ Fi r st >
<M ddl e>L</ M ddI e>
<Last >LANGER</ Last >
</ NAMVE>
<Soci al SecNo>442628888</ Soci al SecNo>
<Bi rt hDat €>1955- 06- 18</ Bi rt hDat e>
</ PARTY>
</ CREDI TFI LEVARI ATl O\>

IDREF Attribute — The IDREF attribute is used in datarecords that “refer to” or “reference” a
record that has a particular 1D attribute. For example, in the XML Credit Report DTD, each
liahility, public record, credit score, and inquiry record has multiple credit file IDREF attributes
(credi t Recor dl DREFO1, cr edi t Recor dl DREFO2, etc.). If acredit report liability record
had acr edi t Recor dl DREFO1 attribute set to “EFX-1", that would indicate which credit file
provided that particular liability record. The combination of 1D attributes and | DREF attributes

-12 -

MISMO XML DTD Engineering Guidelines Draft Version 0.8

provide a powerful method for locating and extracting specific groups of records within an XML
datafile.

Text Attribute — Thistype of attribute contains a text string, which could be a code, word or
phrase. Unlike the Enum attribute there is no list of valid values provided in the DTD or Schema
file. Examplesof Text attributesin the XML Credit Report DTD are the codeFr onVendor and
codeFr onReposi t ory attributes. These attributes are used to store coded values for their
associated element’ s text values, but an enumerated list of valid valuesis not maintained in the
DTD.

In the following sections, three approaches are given for defining a structure for thisdata. The DTD will be shown
first, followed by a“snapshot” of actual employment data displayed in aweb browser with no special programming.
Of course, there are many more possible methods for structuring this data, but these three methods display a full
range of possibilities.

FIRST APPROACH — XML ELEMENTSONLY

This approach uses an “EMPLOY ER” container element to hold the other employer elements.

EMPLOYER-1.DTD
<l-- Enpl oyer-1.DTD -->
<! ELEMENT EMPLOYER (Enpl oyer Type?,

Enpl oyment St ar t Dat e?,

Enpl oynent EndDat e?,

Enpl oyerTitl e?,

Enpl oyer Typeof Busi ness?,

Enpl oyer Posi ti on?,

Enpl oyer Posi ti onDescri pti on?,
Enpl oyer Mont hsi nLi neof Wor k?,
Sel f enpl oynent | ndi cat or ?,
Enpl oyer Nane?,

Enpl oyer St r eet Addr ess?,

Enpl oyer Uni t or Sui t e?,

Enpl oyerCity?,

Enpl oyer St at e?,

Enpl oyer Post al Code?,

Enpl oyer Count r yName?,

Enpl oyer Tel ephone?) >

<! ELEMENT Empl oyer Type (#PCDATA) >
<! ELEMENT Enpl oynent St art Dat e (#PCDATA) >
<! ELEMENT Enpl oyment EndDat e (#PCDATA) >
<!l ELEMENT Empl oyerTitle (#PCDATA) >
<! ELEMENT Empl oyer Typeof Busi ness (#PCDATA) >
<! ELEMENT Enpl oyer Mont hsi nLi neof Work (#PCDATA) >
<! ELEMENT Sel f enpl oynent | ndi cat or (#PCDATA) >
<! ELEMENT Empl oyer Nane (#PCDATA) >
<! ELEMENT Empl oyer Street Addr ess (#PCDATA) >
<! ELEMENT Empl oyer Unitor Suite (#PCDATA) >
<! ELEMENT Enpl oyerCity (#PCDATA) >
<! ELEMENT Enpl oyer St ate (#PCDATA) >
<! ELEMENT Empl oyer Post al Code (#PCDATA) >
<! ELEMENT Empl oyer Count r yNane (#PCDATA) >
<! ELEMENT Enmpl oyer Positi on (#PCDATA) >
<! ELEMENT Enpl oyer Posi ti onDescri pti on (#PCDATA) >
<! ELEMENT Enpl oyer Tel ephone (#PCDATA) >

-13-

MISMO XML DTD Engineering Guidelines

Draft Version 0.8

Here is the output from Internet Explorer 5 when browsing a data file containing a single employer data set.

EMPLOYER-1.XML

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!IDOCTYPE EMPLOYER (View Source for full doctype...)>
- <EMPLOYER>
<EmployerType=>CurrentPrimary</EmployerType>
<EmploymentStartDate>1996-12-15</EmploymentStartDate>

<EmployerTypeofBusiness>Information Services</EmployerTypeofBusiness>
<EmployerPosition>Network Security Analyst</EmployerPosition>
<EmployerMonthsinLineofWork>120</EmployerMonthsinLineofWork>

<Selfemploymentindicator>No</Selfemploymentindicator>
<EmployerName=>INFO1l</EmployerName>

<EmployerStreetAddress>6010 Dawson Blvd.</EmployerStreetAddress>

<EmployerCity>Norcross</EmployerCity>

<EmployerState>GA</EmployerState>

<EmployerPostalCode>30093</EmployerPostalCode>

<EmployerTelephone>800-699-6789</EmployerTelephone>
</EMPLOYER>

SECOND APPROACH — XML ELEMENT CONTAINER WITH ALL ATTRIBUTES
The following DTD structure uses the Empty Element, “Employer” to hold the remaining data, which will be stored

as XML Attributes.

EMPLOYER-2DTD
<l-- Enpl oyer-2.DTD
<! ELEMENT Enpl oyer EMPTY>
<I ATTLI ST Enpl oyer EnployerCity
Enpl oyer Count r yName
Enpl oyer Mont hsi nLi neof Wor k
Enpl oyer Nane
Enpl oyer Posi ti on
Enpl oyer Posi ti onDescri ption
Enpl oyer Post al Code
Enpl oyer St at e
Enpl oyer St r eet Addr ess
Enpl oyer Tel ephone
Enpl oyerTitle
Enpl oyer Typeof Busi ness
Enpl oyer Unitor Suite
Enpl oyment EndDat e
Enpl oynent St ar t Dat e
Sel f enpl oynent | ndi cat or

CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

Enpl oyer Type (CurrentPrimary |
Current Secondary |

PriorPrimary

Pri or Secondary)

#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED

#| MPLI ED >

Here is the output from Internet Explorer 5 when browsing a data file containing a single employer data set.

EMPLOYER-2.XML

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<IDOCTYPE Employer (View Source for full doctype...)>

-14-

MISMO XML DTD Engineering Guidelines Draft Version 0.8

<Employer EmployerCity="Norcross" EmployerMonthsinLineofWork="120" EmployerName="INFO1"
EmployerPosition="Network Security Analyst" EmployerPostalCode="30093" EmployerState="GA"
EmployerStreetAddress="6010 Dawson Blvd." EmployerTelephone="800-699-6789"
EmployerTypeofBusiness="Information Services" EmploymentStartDate="1996-12-15"
Selfemploymentindicator="No" EmployerType="CurrentPrimary" />

THIRD APPROACH — XML CONTAINER, ELEMENTSAND LIMITED ATTRIBUTES
A third method would be to use “EMPLOY ER” as a container for common data el ements, and two attributes.

EMPLOYER-3.DTD
<!-- Enpl oyer-3.DID -->
<! ELEMENT EMPLOYER (Nane?,
Street Addr ess?,
Uni t or Sui te?,
Cty?,
St at e?,
Post al Code?,
Count r yNane?,
Tel ephone?,
Start Dat e?,
EndDat e?,
Mont hsi nLi neof Wor k?,
Title?,
Typeof Busi ness?,
Posi ti on?,
Posi ti onDescri ption?,
Sel f enpl oynent | ndi cator?)>
<! ATTLI ST EMPLOYER Type (CurrentPrimary |
Current Secondary |
PriorPrimry |
Pri or Secondary) #| MPLI ED >
<! ATTLI ST EMPLOYER Sel f Enpl oyed (Yes | No) #l MPLIED >
<l-- Nanme, StreetAddress, UnitorSuite, Cty, State, Postal Code, CountryNang,
Tel ephone, StartDate, EndDate are common data el ements defined previously -->

<! ELEMENT Mbnt hsi nLi neof Wor k (#PCDATA) >
<! ELEMENT Title (#PCDATA) >
<! ELEMENT Typeof Busi ness (#PCDATA) >
<! ELEMENT Position (#PCDATA) >
<! ELEMENT Posi ti onDescri ption (#PCDATA) >

Here is the output from Internet Explorer 5 when browsing a data file containing a single employer data set.

EMPLOYER-3.XML

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<IDOCTYPE EMPLOYER (View Source for full doctype...)>
- <EMPLOYER Type="CurrentPrimary" SelfEmployed="No">

<Name>INFO1l</Name>
<StreetAddress>6010 Dawson Blvd.</StreetAddress>
<City>Norcross</City>
<State>GA</State>
<PostalCode>30093</PostalCode>
<Telephone>800-699-6789</Telephone>
<StartDate>1996-12-15</StartDate>
<MonthsinLineofWork>120</MonthsinLineofWork>
<TypeofBusiness>Information Services</TypeofBusiness>
<Position>Network Security Analyst</Position>

</EMPLOYER>

ThisDTD has several significant changes:
The“Employment_" prefix is stripped away from common core elements like like “ City”, “ State”,
“Postal Code”, etc., since the data elements are contained within an “EMPLOY ER” container already.

-15-

MISMO XML DTD Engineering Guidelines Draft Version 0.8

This alows the common elements to be defined once, but also used in a borrower address, creditor
address, loan originator address or ANY address.

“EmployerType” attribute becomes asimple “type” attribute that describes the type of employment
(Prior, current, primary or secondary). The “Selfemploymentindicator” element becomes a
“SelfEmployed” attribute with a“Yes’ or “No” option.

The elements are ordered in much the same way that the Uniform Residential Loan Application shows
them.

The MISMO Architecture Work Group held a vote on the above mentioned options, and voted in favor of the mixed
XML element and attribute usage option. The Architecture Work Group further voted to mix the XML elements
and use XML attributesin the MISMO standard DTD’ s as per Mike Bixby’s proposal (at the beginning of this
section).

ELEMENT AND ATTRIBUTE NAMING CONVENTIONS

Using naming conventions for XML elements and attributes, provides a uniform look and feel to the Mortgage
Industry DTDs. Described below are four ways of attaining a useful and uniform naming convention.

Use Understandable Element Names

One of the original “intents” of the proponents of XML was that raw XML files should be easily decipherableto
someone viewing the file with atext editor or browser. The meaning of Elements and Attributes tag names should
be understandable to areader who is generally familiar with the mortgage industry.

For example, an X12 data element describing the current balance of aliability would appear as“AMI~T4~250",
whereas the same data would appear in an XML fileas“<Cur r ent Bal ance>250</ Cur r ent Bal ance>".

Element names shall not contain spaces or specia characters.

Derive Element Names from a Data Model

Because of the work done by the Mortgage Industry Data Modeling work group, there was a readily available source
for deriving underwriting element names for the XML DTDs. This group has also done extensive work to
consolidate similar data elements into a single common element. |f possible, a data model should be the first source
used for XML element names. Another document explaining recommended methods for creating a process area
data set, along with lessons learned from underwriting, credit, secondary, service order, and M| process groupsis
also discussed.

Although very useful, it is not mandated by the MISM O Architectural workgroup to use a data model when creating
aMISMO Process Area DTD or logical datadictionary.

Use Standard Capitalization Formats

Although there are no XML specifications regarding capitalization of element names, there are some common
practices already in use in the computer industry. The convention listed below is one recommended method for
standardizing capitalization and making it easy to distinguish the function of a“name” by how it looks.

Container Elementsin ALL CAPS - Example: <CREDI TREPORT>

All Other Element Namesin “UpperCamelCase” format — Example: <Repor t Nurber >

All Attribute Names also in “UpperCamel Case” format — Example: <X12LoanType>

The “UpperCamelCase” and “lowerCamel Case” naming conventions for elements and attributes are used in the
Biztalk Framework.

-16 -

MISMO XML DTD Engineering Guidelines Draft Version 0.8

Element Ordering

The MISMO Core Data workgroup specified that the elements within the DTD needed to follow ordering

guidelines. The element should be organized such that the detailed information about that element is specified in the
top portion of the element declaration, followed by any grouping or contained elements. |If those container elements
have detailed information, that information follows each container element in sequence. The contained elements
and attributes should be in alphabetical order after the initial ordering guidelines have been followed.

Use of Decimal Place Information

The MISMO Core Data workgroup specified that decimal information would be utilized in the logical data
dictionary. Any data point that is a number and consists of multiple decimal points will have the number of decimal
points/places specified as part of the data dictionary.

For the special type money, which istwo decimal places, the Core Data workgroup specified that “money” would be
added as an additional logical (dictionary) datatype.

Number Convention

The MISMO Core Data Workgroup specified that when using numbersin XML namesin MISMO, if the number is
less-than or equal to twenty, spell the number out in thetag. If the number is greater-than 20, then you can use the
Arabic number equivalent for the number. For example:

Number LoanPaymentTenDaysL ate
and NumberLoanPayment30DaysL ate

USE STANDARD ACRONYMS, DO NOT USE ABBREVIATIONS

In some cases, using descriptive names can result in some long element tag names. To alleviate this somewhat, the
XML Architecture work group considered adopting a standard set of common abbreviations for element and
attribute names. If abbreviations were to be adopted, one source for common abbreviations to consider using would
be the Data Interchange Standards Association (DISA) document, “X12-XML: Representation of X12 Semanticsin
XML Syntax”.

The MISMO Architecture Work Group met and voted against the use of abbreviations, but voted for the use of
acronyms.

The Architecture Work Group voted on a proposed list of standard acronyms. Acronyms receiving eight or more
votes were ratified and included in the MISMO standard. Requests for additions to this list may be submitted to
MISMO through DISA. The Architecture Work Group will vote on each submission.

Votes For Keeping Acronym Description
11 ARM Adjustable Rate Mortgage
11 FHA Federal Housing Administration
11 HUD Housing & Urban Development
10 APR Annual Percentage Rate
10 REO Real Estate Owned
10 SSN Social Security Number
9 FICO Fair Issac & CO
9 GNMA Government National Mortgage Association
9 HMDA Home Mortgage Disclosure Act
9 LTV Loan to value
9 MERS Mortgage Electronic Registration Systems
9 PITI Principal, Interest, Taxes and Insurance

Source
CHL
CHL
CHL
CHL
CHL
CHL
CHL
CHL
CHL
CHL
ASC
ASC, MGIC

-17 -

MISMO XML DTD Engineering Guidelines

Draft Version 0.8

PUD
AKA
CUSIP
FDIC
FEMA
HELOC
IRA
IRS
LIBOR
RESPA
URLA
VA

00 00 00O 0O 00 CO 00 OO 0O 00 OO O

Planned Unit Development

Also Known As

Common Unique Security Identifier
Federal Deposit Insurance Corporation
Federal Emergency Mgmt Agency
Home Equity Line of Credit

Individual Retirement Account

Internal Revenue Service

London InterBank Offered Rate

Real Estate Settlement Procedures Act
Uniform Residential Loan Application
Veterans Administration

CHL
CHL
CHL
ASC
CHL
ASC
ASC
ASC
CHL
CHL
ASC
CHL

-18 -

MISMO XML DTD Engineering Guidelines Draft Version 0.8

General approach to creating names

A name is formed through the use of keywords. The naming format is (from left to right) Primary Qualifier(s),
Prime Word, Secondary Qualifier(s), and Class Word, as shown in the matrix below. The most descriptive term or
prime word appears first, followed by successively less selective terms or secondary qualifiers. The entity name can
be used as the primary qualifier to remove ambiguity for its elements. Primary qualifiers are often used to indicate

ownership and/or the point in the life cycle where the business term falls. A name should be able to stand on its
own, without depending on context for interpretation.

Primary Qualifiers PrimeWord Secondary ClassWord
Qualifiers
Ownership LifeCycle
Applicant Acquisition Product Percent Sold Address
Borrower Acquired Seasoning Percent Acquired Amount
CoBorrower Acquired Property Guaranty Fee Percent Owned City
Contract Current Region Scheduled Code
Counterparty Delinquency Principal Actual Comment
Credit Bureau Distressed Asset Payment Estimated Count
Credit Report Liquidated Yield Applied Day
Deal Liquidation Index Ratio Description
Fannie Mae MBS 4 Plus Margin Total Factor
Investor Modified Interest Adjustment Identifier
Lender Monthly Method Indicator
Loan Origina etc., etc. Summary Limit
Mortgage Insurer Originated Type Month
Pool Origination Category Name
Project Previous Number
Property Quarterly Percent
Region Unmodified Period
Security Weekly Rate
Security Firm Y ear-to-Date State
Seller Term
Servicer Time
Third Party Year
Trade
Trust

There is abalance that needs to be struck between the need to create an accurate name and the need for brevity.
XML isin general averbose language, and the longer the names, the higher the ratio of tagsto actual datain a
‘document’. If network bandwidth is a constraining factor on the performance of a demanding application, use of
very short names may be necessary. In general, names should be aslong asis needed to clearly and unambiguously
identify the business concept.

Primary Qualifier(s)
Names may begin with primary qualifiersif one or acombination of primary qualifiersis
necessary to remove ambiguity. A good rule of thumb isto use a primary qualifier if the
prime word applies to more than one "thing" such as the loan, property, borrower, or
investment (e.g., Borrower Zip Code, Seller Zip Code, Mortgage Insurer Zip Code). Itisalso
appropriate to use a Primary Qualifier if the value of an attribute can change at various points
of the life cycle such as origination, acquisition, and liquidation.
A name may have zero, one or multiple Primary Qualifiers.

The naming standards matrix provides examples of primary qualifiers to indicate ownership
and life cycle and an order in which to display them if both are applicable (ownership first,

life cycle second).

-19-

MISMO XML DTD Engineering Guidelines

Draft Version 0.8

Prime Word

Secondary Qualifi

The most descriptive term included in the business name is the Prime Word. The Prime Word
isthe foundation of the businessterm. All other words included in the business name
describe the Prime Word in some way.

All business names must have a Prime Word.

If the business name has Primary Qualifiers, the Prime Word comesimmediately following
the Primary Qualifier(s).

er(s)

Used to further clarify the Prime Word. Secondary Qualifiers are successively less selective
qualifiersrequired to describe the Prime Word.

A term may have zero, one or multiple secondary qualifiers.

The attached Naming Standards Matrix provides alist of categories of potential secondary
qualifiers and arecommended order in which to display them if more than one is applicable.

Class Word

. All attributes must end in a class word that corresponds to the data type.

Class Words and Their XML Data Types

ClassWord Definition Domain XML Data Type

Address A geographic location Character string

Amount Any quantity of money Float number, decimal
(dollar amount)

Code Identifies classifications | Character string
of nouns

Comment General narrative or text | Character string

Count A number reached by Integer number, integer
keeping count

Date A calendar date or range | Date dateTime
of dates

Day The day portion of the Integer number, integer
calendar date

Description Narrative text that Character string
defines or describes a
specific thing

Factor A quantity that when Float, Integer number, decimal, real
multiplied together with
another quantity yields a
given product

Identifier Alphanumeric string Integer, Character number, integer, string
used to uniquely identify
an item

Indicator Denotes that acondition | Character boolean
istrue or false

Limit The greatest or smallest | Integer, Float number, integer, decimal, real
amount or number
allowed

Month The month portion of Character, integer string, number, integer
the calendar date

Name Identifies specificitems | Character string

Number A numeric referenceor | Character, Integer, Float | number, integer, decimal, real
identification

Percent Ratio between data Float, Integer number, decimal, real

-20-

MISMO XML DTD Engineering Guidelines Draft Version 0.8

ClassWord Definition Domain XML Data Type

values
Period Aninterval of time Integer number, integer, timePeriod
Rate A quantitative measure | Float number, decimal, real

expressing a cost or
service per unit

Term Aninterva of time Integer number, integer

Time Thetime an even occurs | Time time

Year The year portion of the | Integer number, integer
calendar date (4 digits)

-21-

MISMO XML DTD Engineering Guidelines Draft Version 0.8

Date and Time Specification Adoption

The MISMO Architecture work group held a vote, and decided to adopt the existing International Standards
Organization (1SO) format for dates and times as referenced below.

A Summary of the International Standard Date and Time Notation

(Adapted from Markus Kuhn)

International Standard 1SO 8601 specifies numeric representations of date and time. This standard notation helps to
avoid confusion in international communication caused by the many different national notations and increases the
portability of computer user interfaces. In addition, these formats have several important advantages for computer
usage compared to other traditional date and time notations. The time notation described here is aready the de-facto
standard in almost all countries and the date notation is becoming increasingly popular.

Contents: Date, Time of Day, Time Zone.

Date
The international standard date notation is

YYYY-MM-DD

where YYYY istheyear in the usual Gregorian calendar, MM is the month of the year between 01 (January) and 12
(December), and DD isthe day of the month between 01 and 31.
For example, the fourth day of February in the year 1995 is written in the standard notation as

1995-02-04

Other commonly used notations are e.g. 2/4/95, 4/2/95, 95/2/4, 4.2.1995, 04-FEB-1995, 4-February-1995, and many
more. Especialy the first two examples are dangerous, because as both are used quite often in the U.S. and in Great
Britain and both can not be distinguished, it is unclear whether 2/4/95 means 1995-04-02 or 1995-02-04. The date
notation 2/4/5 has at least six reasonable interpretations (assuming that only the twentieth and twenty-first century
are reasonable candidates in our life time).

Apart from the recommended primary standard notation YYYY-MM-DD, I SO 8601 al so specifies a number of
alternative formats for use in applications with special requirements. All of these alternatives can easily and
automatically be distinguished from each other:

The hyphens can be omitted if compactness of the representation is more important than human readability, for
exampleasin

19950204

For situations where information about the century isreally not required, a 2-digit year representation is available:

95-02-04 or 950204

If only the month or even only the year is of interest:

1995-02 or 1995

In commercial and industrial applications (delivery times, production plans, etc.), especially in Europe, it is often
required to refer to aweek of ayear. Week 01 of ayear is per definition the first week that has the Thursday in this
year, which is equivalent to the week that contains the fourth day of January. In other words, the first week of a new
year isthe week that has the majority of its daysin the new year. Week 01 might also contain days from the
previous year and the week before week 01 of ayear isthe last week (52 or 53) of the previous year even if it
contains days from the new year. A week starts with Monday (day 1) and ends with Sunday (day 7). For example,
the first week of the year 1997 lasts from 1996-12-30 to 1997-01-05 and can be written in standard notation as

1997-W01 or 1997W01

-22-

MISMO XML DTD Engineering Guidelines Draft Version 0.8

The week notation can also be extended by a number indicating the day of the week. For example, the day 1996-12-
31, whichisthe Tuesday (day 2) of the first week of 1997, can also be written as

1997-W01-2 or 1997W012

for applications like industrial planning where many things like shift rotations are organized per week and knowing
the week number and the day of the week is more handy than knowing the day of the month.
An abbreviated version of the year and week number like

95W05

is sometimes useful as a compact code printed on a product that indicates when it has been manufactured.
The I SO standard avoids explicitly stating the possible range of week numbers, but this can easily be deduced from
the definition.

Both day and year are useful units of structuring time, because the position of the sun on the sky, which influences
our lives, is described by them. However the 12 months of a year are of some obscure mystic origin and have no real
purpose today except that people are used to having them (they do not even describe the current position of the
moon). In some applications, a date notation is preferred that uses only the year and the day of the year between 001
and 365 (366 in leap years). The standard notation for this variant representing the day 1995-02-04 (that is day 035
of the year 1995) is

1995-035 or 1995035

Leap years are years with an additional day Y'Y Y'Y -02-29, where the year number is a multiple of four with the
following exception: If ayear isamultiple of 100, thenitisonly aleap year if it isaso amultiple of 400. For
example, 1900 was not a leap year, but 2000 is one.

Time of Day

Theinternational standard notation for the time of day is

hh:mm:ss
where hh is the number of complete hours that have passed since midnight (00-24), mm is the number of complete
minutes that have passed since the start of the hour (00-59), and ss is the number of complete seconds since the start
of the minute (00-59). If the hour value is 24, then the minute and second values must be zero. [Although | SO 8601
does not mention this, the value 60 for ss might sometimes be needed during an inserted leap second in an atomic
time scale like Coordinated Universal Time (UTC). A single leap second 23:59:60 isinserted into the UTC time
scale every few years as announced by the International Earth Rotation Service in Paristo keep UTC from
wandering away more than 0.9 s from the less constant astronomical time scale UT1 that is defined by the actual

rotation of the earth.]
Anexampletimeis

23:59:59

which represents the time one second before midnight.
As with the date notation, the separating colons can also be omitted asin

235959
and the precision can be reduced by omitting the seconds or both the seconds and minutes asin

23:59, 2359, or 23

It isalso possible to add fractions of a second after a decimal dot or comma, for instance the time 5.8 ms before
midnight can be written as

23:59:59.9942 or 235959.9942

As every day both starts and ends with midnight, the two notations 00: 00 and 24:00 are available to distinguish the
two midnights that can be associated with one date. This means that the following two notations refer to exactly the
same point in time:

-23-

MISMO XML DTD Engineering Guidelines Draft Version 0.8

1995-02-04 24:00 = 1995-02-05 00:00

In case an unambiguous representation of timeis required, 00:00 is usually the preferred notation for midnight and
not 24:00. Digital clocks display 00:00 and not 24:00.

SO 8601 does not specify, whether its notations specify apoint in time or atime period. This means for example
that 1SO 8601 does not define whether 09:00 refers to the exact end of the ninth hour of the day or the period from
09:00 to 09:01 or anything else. The users of the standard must somehow agree on the exact interpretation of the
time notation if this should be of any concern.

If adate and atime are displayed on the same line, then always write the date in front of thetime. If adate and a
time value are stored together in asingle datafield, then 1SO 8601 suggests that they should be separated by alatin
capital letter T, asin 19951231T 235959.

Time Zone

Without any further additions, a date and time as written above is assumed to be in some local time zone. In order to
indicate that atimeis measured in Universal Time (UTC), you can append a capital letter Z to atime asin

23:59:597 or 23597

[The Z stands for the "zero meridian™, which goes through Greenwich in London, and it is also commonly used in
radio communication where it is pronounced "Zulu" (the word for Z in the international radio alphabet). Universal
Time (sometimes also called "Zulu Time") was called Greenwich Mean Time (GMT) before 1972, however this
term should no longer be used. Since the introduction of an international atomic time scale, ailmost all existing civil
time zones are now related to UTC, which is slightly different from the old and now unused GMT]

The strings

+hh:mm, +hhmm, or +hh

can be added to the time to indicate that the used local time zone is hh hours and mm minutes ahead of UTC. For
time zones west of the zero meridian, which are behind UTC, the notation

-hh:mm, -hhmm, or -hh

isused instead. For example, Central European Time (CET) is +0100 and U.S./Canadian Eastern Standard Time
(EST) is-0500. The following strings all indicate the same point of time:

12:00Z = 13:00+01:00 = 0700-0500

There exists no international standard that specifies abbreviations for civil time zones like CET, EST, etc. and
sometimes the same abbreviation is even used for two very different time zones. In addition, politicians enjoy
modifying the rules for civil time zones, especially for daylight saving times, every few years, so the only really
reliable way of describing alocal time zone is to specify numerically the difference of local timeto UTC. Better use
directly UTC as your only time zone where this is possible and then you do not have to worry about time zones and
daylight saving time changes at all.

-24 -

MISMO XML DTD Engineering Guidelines Draft Version 0.8

Extendible XML Architectures

The purpose of this section is to describe the rel ationships between the DTDs created by the MISMO process, the
DTD enhancements used by MISMO conforming services and vendors, and the DTDs that actually govern instances
of XML messages interchanged by mortgage industry players.

First of all, it is necessary to understand that the standardization of the language of business messages is essential for
communication to occur. XML provides away for many kinds of messages, using many different “languages’ (also
called “vocabularies’) to be understood (“ parsed”) by a single standard piece of software called an “XML Parser”.
Each business language, such as the mortgage business language being developed by the non-profit XML Mortgage
Partners, is expressed as aformal written linguistic model called a“document type definition” or, more commonly,
“DTD”. An XML Parser can scan aDTD together with a single business message, and determine whether the
message conforms to the syntactic constraints imposed by the DTD. In other words, the parser reports whether or
not the message is interpretable according to the business language.

The ability to use a single standard piece of software (avalidating XML parser) to verify that a message conforms to
abusiness language is enormoudly significant. Everyone who sends messages can determine whether their
messages will be understandable when they arrive, and everyone who receives messages can determine whether the
messages make sense. When a messages proves to be unprocessable (i.e., when information interchange is
unsuccessful), the message’ s conformance or lack of conformance to the syntactic constraints of the business
language to which it presumably conforms can be determined unambiguously; this makes it much easier to tell
whose software was deficient, even if the software at both ends of the communication is deficient.

A DTD represents a contract between information providers, information users, and information processing system
vendors. It'samodel that users agree serves their needs. Information providers agree to provide information that
conforms. Information processing system vendors agree to make their systems able to create and send conforming
messages, and to receive and process appropriately incoming messages. Because thereis a public model, formally
expressed asa DTD, an electronic marketplace of ideas can form around that model. Without such a model, there
may be as many different message formats and business vocabularies as there are players in the industry, or even
more. This creates a situation that reduces the productive capacity and profitability of the entire industry: purchasers
of information may have to buy or build software systems that understand all the formats of every information
provider; most of this effort would be avoided by having a single standard format. Information providers may have
to create information that conforms to the input requirements of dominant software vendors. Smaller software
vendors are squashed because nobody can afford to buy or use software marketed by anyone but the dominant
player. Since the dominant software vendor is left with sole responsibility for determining message formats, it is
unlikely that diverse business models will be supportable, and it is unlikely that the models that will be used will
meet the needs of all players. So, creating an industry-wide DTD that formally expresses the business language
used in any given message type is the most essential step to be undertaken by any industry in its efforts to exploit the
power of XML. The DTD isthe most formal legal and technical expression of the industry’ s consensus about the
nature of its information.

Having understood al that, industry groups often assemble aDTD hastily, so that there could be a standard as soon

aspossible. They naively believe that the use of the DTD formalism will solve al their information interchange

problems. This doesn’t work very well, for two reasons:

(1) DTDsare static, while business changes constantly. The DTD becomes less and |ess appropriate for current
business activity, just as an old shoe becomes less and less comfortable for a growing child’s foot.

(2) DTDs are monalithic, while business models vary widely.

When we realize these problems, we seeimmediately that the fundamental function of a DTD—to make the form

and substance of business messages predictable and understandable—is at odds with the realities of incessant change

and increasing diversity. What, then, are the correct answers to the questions:

(1) How can we detect the need for change in the DTD, and to change the industry-wide DTD without
compromising the validity of existing messages and files, and without causing existing systems to be unable to
process messages that conform to a more modern version of the industry-wide DTD?

-25-

MISMO XML DTD Engineering Guidelines Draft Version 0.8

(2) How can we permit individual businesses to deviate from the industry-wide DTD freely, in order to accomplish
their business objectives, without compromising the understandability, validatability and interchangeability of
the information contained in the deviant messages?

It turns out that both problems can be solved by the practice of alowing syntactic and semantic constraints of
business languages (“base architectures’) to be “inherited”. The formalisms for declaring architectural inheritance
are internationally standardized in 1SO/IEC 10744:1997, in which inherited element types are termed “architectural
forms’. The free, open-source, and industry-dominating “ SP” parser supports architectural forms and architectural
validation. Extendible architectures represent an alternative to solving the problem of extending the MISMO
standard for the use within an organization, and have not yet been formally adopted by the MISMO Architectural
Work Group.

How architectural inheritance works

When an XML business message (an “XML instance”) conforms to a base architecture, such asthe MISMO
architecture, at least some of its elements, when extracted from the message, form a business message that in every
way conformsto the base architecture, asif the base architecture were the DTD.

Hereisafuller explanation. Normally, if a business message is parsed against its own DTD, the result of the parse
corresponds exactly to the business message—the parser reports all the elements exactly as it encountered them in
the message. However, if that business message declares that it inherits from a base architecture (another DTD,
caled a“meta-DTD” when it is used as a base architecture), then the parser can betold to ignore all of the elements
of the message that are not based on (do not inherit the syntax and semantics of) corresponding element types
(“architectural forms”) in the meta-DTD. The parts of the message that remain are then validated against the meta-
DTD, and the parser reports the parsed information just as if the “architectural instance” (the business message) that
was revealed by deleting all the non-architectural features were the entire instance, and as if the meta-DTD were the
DTD.

A single architecture-aware parser, such as SP (an open-source SGML parser), can “extract” any of the
“architectural instances” from any XML instances that uses one or more base architectures.

Multiple inheritance

A single element in an XML instance can be based on several architectural forms (element types), one from each
base architecture. Thisisvery useful when information must be understood in several ways (i.e., “ seen through the
lens” of multiple architectures); it allows asingle XML instance to conform to multiple DTDs, and thus provide
input to diverse applications, without having to duplicate the same data content, and without having to maintain
separate copies of the data content in order to make the data available under multiple DTDs. The single maintained
form of the data can be automatically converted into the form needed by a given application by a single piece of
software—an XML parser that does not even have to be specially configured in order to perform the extraction.
There is no need for atransformation program to be written; everything needed to perform such a conversion is
already inherent in the XML instance.

Recursive (or “nested”) inheritance

An architectural instance, after it has been extracted, may itself have one or more base architectures. Thus, an
architectural instance can be extracted from an architectural instance. Looking at the same thing from the
perspective of the DTD and the meta-DTDs, the DTD declares a base architecture, which isitself aDTD that
declares a base architecture. This allows enormous flexibility, on account of the fact that there is no limit on the
number of recursions. If, in the course of maintaining an architecture, it becomes necessary or desirableto insert a
new layer at any level of inheritance, it is easy to do so, and the net effect isto add one more possible base
architecture on the basis of which a corresponding XML architectural instance can be automatically extracted.

-26 -

MISMO XML DTD Engineering Guidelines Draft Version 0.8

Overview of the overall MISMO information architecture

Top level:

Certain element types, such as an element type intended to contain a human being’s surname, or the name
of acity or municipality, are used in more than one part of the MISMO architecture (e.g. Party or Contact). These
“common element types’ are declared as common element types and aggregated in a base architecture on which all
corresponding elements, in al DTDs throughout the MISMO architecture, are based. These have also been called
“global” DTD’s.

Second level:

Each of the DTDs at the second level from the top is created and maintained by an editorial committee of
persons who are expert in the knowledge domain that corresponds to the message type defined by that DTD. For
example, the underwriting DTD is designed to serve the needs of underwriting activities, and it is under the editorial
control of acommittee of underwriting experts. The committees are required to cause any element types that they
create to inherit and conform to the architectural forms of the common meta-DTD wherever there isamatch. The
common meta-DTD (top level) is also under the control of an editorial committee. One of the responsibilities of the
common DTD committee isto review the DTDs of the other committees, and, wherever two committees have
created elements with similar semantics, to create acommon architectural form to which the two committees will be
able to conform.

The second level consists of distinct DTDs to permit responsibility for maintaining these DTDsto be
delegated to those who best understand the information being communicated, as well asthe industrial requirements
that must be met. It may turn out that fewer or more committees are needed; the specific organization of the
committees and their responsibilities is not a system-design problem; it is a political and economic problem to be
resolved by the community. The MISMO information architectureis to be flexible, and to avoid imposing technical
constraints on a matter that can only be decided by human beings on the basis of non-engineering factors like the
available talent pool, governing business processes, etc. Thislevel isknown as the process level of the architecture
and contains the process area workgroups work product.

Third level:

The MISMO_Union DTD isthe base architecture that provides a standard way for any MISMO message to
contain any number of any of the message types defined by committees in the second level. The MISMO Union
DTD inheritsall of the committee architectures comprehensively: nothing isleft out. The MISMO_Union
architecture is the base architecture that comprises the essential work product of MISMO. The purpose of thislevel
of the architecture isto gather all the data for the industry in one DTD, so that people can derive from it, and this
overall DTD isknown asthe “release” DTD. Thisindustry-encompassing DTD may be used to derive process
specific DTDs. For example, one could generate a Credit Reporting DTD or a Service Request DTD; alternatively,
one could create a DTD for the entire mortgage industry.

Fourth level:

At the fourth level are extensionsto the MISMO_Union architecture that are contributed by various
mortgage industry players, in order to serve their own needs, and the needs of the business partners with whom they
will communicate by means of messages that conform to the MISMO_Union architecture. Thisisthelevel thatis
known as the “ application trandation layer” or ATL. Each company utilizing the standard would extend it from this
level, and may or may not choose to provide these extensions to the industry or their trading partners.

-27 -

MISMO XML DTD Engineering Guidelines Draft Version 0.8

OTHER XML ARCHITECTURE WORK GROUP TASKS

Document Maintenance and Operation Proceduresfor the MISMO XML Database — All of the
procedures for using and maintaining the MISMO XML Database should be clearly documented on the
MISMO web site.

Develop Common Format For Mortgage Industry I mplementation Guides — Even though it will
eventually be possible to “self-document” the XML data structures when we migrate to the XML
Schema format, there is still an immediate need to provide guidance for implementation issues and
details with each XML transaction set, in acommon document format or template. The guides should
supply numerous examples and sample data that illustrate the features of the DTD formats

Select or Develop an XML Routing “Framework” — Almost simultaneous with the implementation
of thefirst MISMO DTDs, there will be aneed for some type of XML data structure to handle the
routing of “business-to-business’ (B2B) requests and reports. The “BizTak Framework” hasasimple
data structure that is similar to the X12 I SA envelope that contains the necessary information for
automated routing of documents within aintranet or internet environment. One of the tasks of the
XML Architecture work group would be to examine existing routing “frameworks’ and decide
whether to use an existing “framework” (such as BizTalk), develop our own, or leave the choice of
“framework” to the individual companiesimplementing XML B2B transactions.

Develop acommon XML Error Format — Most X 12 implementations use the X12 824, 997 or
similar transaction for reporting errors in the B2B environment. Thereisaneed for a similar standard
structure for the XML transactions used in the Mortgage Industry.

Continue extending these guidelines— As we move forward there will be additional discussions
about specifications and MISMO XML design and implementations, we will need to keep those
decisions coming into this guidelines specification. It isintended that this document will evolve over
time and itself be posted to the MISM O website under revision control.

-28 -

