S NET

RosettaNet Implementation Framework:
Core Specification

Version: Validated 02.00.00

13 July 2001

This color indicates changes made for version R02.00.00A
This color indicates changes made for version R02.00.00B

This color indicates changes made for version R02.00.00C
This color indicates changes made for version V02.00.00

Insignificant spelling or formatting changes are not highlighted.

©2001 by RosettaNet. All rights reserved.

A U b~ WN -

N

10
11
12

13

14
15
16
17
18
19
20

21

22
23
24
25
26
27

28
29
30

Release-foer-ValidatienValidated 13 July 2001Section 1, Implementation Framework Concgw{w

Legal Disclaimer

RosettaNet™, its members, officers, directors, employees, or agents shall
not be liable for any injury, loss, damages, financial or otherwise, arising
from, related to, or caused by the use of this document or the
specifications herein, as well as associated guidelines and schemas. The
use of said specifications shall constitute your express consent to the
foregoing exculpation.

Copyright

©2001 RosettaNet. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the
United States of America.

Trademarks

RosettaNet, Partner Interface Process, PIP and the RosettaNet logo are
trademarks or registered trademarks of '"RosettaNet," a non-profit
organization. All other product names and company logos mentioned
herein are the trademarks of their respective owners. In the best effort, all
terms mentioned in this document that are known to be trademarks or
registered trademarks have been appropriately recognized in the first
occurrence of the term.

Additional Disclaimers

Inclusion of Document Type Definitions (DTDs) and Element descriptions
in this document are for ease of comprehension. While every effort has
been made to ensure that what appears in this document matches the
separately published DTD files (*.dtd) and Message Guideline
specifications associated with this document, in the event of discrepancies,
the DTD file or Message guideline specification is to be used.

Use of examples throughout this document is intended to illustrate the
concepts or rules being discussed. They must not be treated as
specifications themselves.

©2001 by RosettaNet. All rights reserved. i

Release-for-ValidatienValidated 13 July 2001Section 1, Implementation Framework Concgptﬂg'm{w

Contents
Version HiStory ..uicciiiccriismmssmsesmsssssssssassssnssssnsssansssnnsnnnnssnnnnnnnnnnns 1X
Preface Xixti
1 Introductioncciciiiiiiii i sr s s r s n s n s n e L
1.1 BusSingss BaCKgroUNdcuiiiiiiiiiiiiii i 1
1.1.1 Implementation Framework Concept.....ccccoiiiiiiiiiiiiiiiiiiccic s 1
1.1.2 Scalability of RosettaNet Specifications........cccoviiiiiiiiiiiiii i 2
1.2 Technical BaCKgrOoUNd.c.iiiuiiiiiiii st raaeaanea 3
1.2.1 Public vs. Private ProCeSSEeS......cciiiiiiiiiiiiiiiiiii e 3
1.2.1.1 Interoperability Considerationsc.cciviiiiiiiiiiiiii i 3
1.2.2 PIPs and the Implementation Frameworkc.ccccvviiiiiiiiiiiiiiiiiiieens 4
1.2.2.1 Action and Signal MESSagES ... cuiiviiriiiiiiiiiiiiie it iaa i eaeaaeas 5
1.2.3 PIP Message Exchange Models........cooiiiiiiiiiiiiiiiiicc i i 6
1.2.4 PIP Metamodelc.oiiiiiiiiiiii 6
1.2.4.1 Business Operational View (BOV)ccoiviiiiiiiiii i ne s 7
1.2.4.2 Functional Service VIeW (FSV) ..o e s 8
1.2.4.3 Implementation Framework View (IFV)....cccciiiiiiiiiiiiiiiiiiiiiiiiiens 9
1.2.5 RosettaNet Business Message OVerVIEWvvviveiiiiieiiinieiiieesiineennnnees 9
1.2.5.1 Parts of a RosettaNet Business MesSage.......cvviviiiiiiiniiieiieiinnnninnens 9
1.2.5.2 Third-Party (Non-RosettaNet) Service Content........c.ccvvvvvvvininnnnn. 10
1.2.5.3 Routing RosettaNet Business Messages through Hubs................... 11
1.2.6 Signals vs. Process Control PIPS.......ccciiiiiiiiiiiiiii i eeea 11
1.2.7 Network Application Modelcooiiiiiiii e 12
1.2.8 Authentication, Authorization and Non-Repudiation.................oouei. 12
1.2.8.1 Authenticationcocviiiiiiii 13
1.2.8.2 AUthOFIZatioNoiiii 13
1.2.8.3 NON-Repudiationciiiiiiiiii i e 13

2 Technical Specifications.......ccccvviniesrmsesrrsssssessssesssssssansssansnnns 15

2.1 RosettaNet Business Message ComponNentS ...oiviviiiiiiiiiiieiiiiiieiieennineeas 15
2.1.1 INErOAUCHION «.vee e 15

A T I U 1= T 1 P 15
2.1.2.1 ENCOAiNG RUIES ..ottt et eeeaas 15

2.1.2.2 Validation RUIESoviiiiiiiiii e 16

©2001 by RosettaNet. All rights reserved. iii

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

2.2

2.3

2.4

2.1.2.3 Constraints on Message Elementsc.cooiiiiiiiiiiiiiiiiieees 17
2.1.2.4 DTD Naming, Pathname Specification and Versioning 17
2.1.2.5 XML NamMESPACE. ... uiutititiieiirtitiaa et 17
2.1.3 Header Structure and Format Specifications...........cceeviiiiiniinninnnn. 18
2.1.3.1 Preamble SpecifiCation......c.coiiiiiiiiiii e 18
2.1.3.2 Delivery Header Specificationcooiiiiiiiiiiiiii e 20
2.1.3.3 Service Headercoiviuiiiiiiiiiii i 23
2.1.4 Payload ComPONENtS . iiiiii it 33
2.1.4.1 Service Content ... 33
2.1.4.2 Handling AttachmentsS.o e 33
2.1.4.3 Referring to Attachments from within Service Content............... 3433
2.1.4.4 Shipping Non-RosettaNet Service Content in the Payload.............. 35
Security Provisions and Trading Partner Authenticationccoeeinis 3635
2.2.1 Use of S/MIME within RosettaNet........ciiiiiiiiiiiiiiiii i 36
2.2.2 Use of Digital Certificates within RosettaNetc..cooiiiiiiiiinnn. 38
RosettaNet Business Message Packaging and Unpackagingc.cocenenee. 39
2.3.1 Definitions Of TEIMS ..iuiuiiiii e 40
2.3.2 Using Intermediariescoociniiiiii e 40
2.3.3 Packaging the RosettaNet Business Messagec.cevvvvinvineiininnnnnnns. 40
2.3.4 Unpackaging the RosettaNet Business Messagecccevevnenennn. 5453
2.3.4.1 Unpackaging StePS....cuiuiuiiiieie et 5453
2.3.5 Intermediary-Routed Business Messagescocvveviieineiennennnnns 6059
RosettaNet Business Message Transfer.....cuvivviviiiiiiiiii i snesneeaeaaes 6166
2.4.1 Synchronous Response MESSAgEScvvriiriiriiniieiieiieiieiiesiennnans 6166
2.4.2 HTTP Transport Binding Specification..........ccccoiiiiiiiiiiiiiiiiininns 6261
2.4.2.1 Outbound HTTP Binding ...uceiiiiiiiiiiiiiii i e e e e 626t
2.4.2.2 Processing Inbound HTTP POSES.....covviiiiiiiiiiiiiiiii i 6564
2.4.2.3 Processing Inbound Synchronous HTTP Posts.........c.cocviiiienennne. 6665
2.4.2.4 HTTP Synchronous Exchanges & the Message Sender 6766
2.4.2.5 Transfer-Level SECUItY . oiiiiiiiiii i e 6766
2.4.2.6 Debug Header as an Extension-Header in HTTPccvvvennne. 6766
2.4.2.7 ComplianCe SUMMAIY .. uuieiiiiiieieie et e e e eeees 6968
2.4.3 SMTP Transport Binding Specificationcccoviiiiiiiiiiiiiiininns 7069
2.4.3.1 SMTP Transport ENVEIOPE.....cociiiiieiiiiiiiiiiiene e ene e 7069
2.4.3.2 Transfer-Level SECUItY ..oiiiiiiiiii i e 7372
2.4.3.3 Transfer-Level Error Handlingcooviiiiiiiiiiiiccs e 7372

©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, Implementation Framework Concgptﬂg'm{w

2.4.3.4 Debug Header as an Extension-Header in SMTPccvvvuennnne. 73
2.4.3.5 ComplianCe SUMMAIY .. .uiuiiiiiiie e e e e eaes
2.4.4 Transfer Protocol Independence and Other Transfer Mechanisms ..

2.4.5 General Guideline for Debug Mode for Other Transport Protocols ..

2.5 Business Signal Specifications & Process Control PIPs...........cccvceviiviiinnnnnn.
2.5.1 BUSINESS SIigNalS ..uueieiiiiie i e
2.5.1.1 Receipt Acknowledgmentc.covieiiiiiiiii

2.5.1.2 EXCEPLION vt

2.5.2 Process Control PIPS.......ccoiuiiiiii e
2.5.2.1 O0A1: Notification of Failure (NOF)oviiiiiiiiieeeeee

2.6 Flow of RosettaNet BUSIiNESS MESSAGESuiueiniiiiieiieie e eeaeeaaeenaaens
2.6.1 Asynchronous Single-Action (Simplest) Activityccoovviiiieiinnnnns
2.6.2 Asynchronous Two-Action Activity....ccccoiiiiiiiiii i

2.6.3 Synchronous One-Action/Two-Action Activitycccoviiiiiiininnnnn.
2.6.4 Handling Failureso.oiiiiii e
2.6.4.1 Retries and TimMeEOUES.ccoviiiiiiiiiiiii e

2.6.4.2 Other Failure Conditions and Notification of Failure....................

2.6.5 Receipt Acknowledgmentccooiiiiiiiiiiiii e
2.6.6 Handling Retries and Late Acknowledgments..........c.cccviieiinnnnn.
2.6.7 Receipt Acknowledgment and General Exception Error Codes
2.6.8 Interaction DiagramsS. . ..ocuiiiiiiiiiiiiiiiiiiiirs s rar e aaaaaas
2.6.8.1 Asynchronous Interactionsccoveiiiiiiiiiiiiii e

2.6.8.2 Synchronous INteractionsS........c.couvuieiiiiiiiiiii e e

2.6.8.3 Notification of Failure SCenarioscccvviiiiiiiiiiiiiiieeeeee

Appendix A Key Differences between RNIF 1.1 & RNIF 2.0.....95
Appendix B Required PIP Metamodel Changesccccvvueiinne s 9794

4
Appendix C IFV Mapping from BOV and FSVccecvveiiineeenn.. 9998
Appendix D Importance of Transfer Independence............. 103162
Appendix E Anticipated Futures.........covecivvcrisrvncsnn s snne e 1041403
Appendix F Additional Examples.......cccvccmiiriiessinc s snnn . 107306

Appendix G Referencesciicvvmrmnsrrscssssssnsssnnsssnnssnnnnnanses 1 20344

kg

Appendix H €] [o T -1 o R B9 0.1 =

©2001 by RosettaNet. All rights reserved. v

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

Figures

Figure 1. RosettaNet Specifications in a Trading Partner Implementation............cccovvviiiiiiinnen. 2
Figure 2. Private VS. PUDIIC PrOCESSES ittt ittt i et a e e e s e et e rn e anereaneanas 3
Figure 3. Sample PIP Interaction Diagrami....ccic i s a e e e e e e e anreanans 5
Figure 4. Sample BOV Flow (Using “"Query Marketing Information” PIP)cccviiiiiiiiiiiiiiienn, 7
Figure 5. Sample FSV Network Component Dialog ...vviviiiiiiiiiiiiii i e naaes 8
Figure 6. Parts of a RosettaNet BUSINESS MESSAgE .. .iiuiiiiiiiii i arereanens 10
Figure 7. Network Application MOdel.......oiuiiiiiii e aeaas 12
Figure 8. Packaging RosettaNet Business Message without Encryption.........ccooviiiiiiiinnen, 4443
Figure 9. Packaging Payload Container Prior to ENCryptionccooiiiiiiiiiiiiiiiivce e 4645
Figure 10. Encrypting the Payload Container.....cviiiiiiiiiii e e neaaeas 4746
Figure 11. Packaging RosettaNet Message with Encrypted Payload Container............c.covevvueens 4847
Figure 12. Packaging Payload Prior to ENCryplion.....ccvieiiiiiiiicic s e 4948
Figure 13. Encrypting the Payloadcoviiiiiiii s e 5049
Figure 14. Packaging RosettaNet Message with Encrypted Payload...........c.coviviiiiiiiiiiinnnens 5156
Figure 15. Signing the Unencrypted RosettaNet Business Message.......ccvvvvivviieiiiiiiiiiiinnnnnnns 5156
Figure 16. Signing the Encrypted RosettaNet Business Message (Payload Encrypted).............. 525+
Figure 17. Signing the Encrypted RosettaNet Business Message (Payload Container Encrypted) 525+
Figure 18. Entire Message ProcesSiNg FIOW ...cueiiiiiiiiii it ne e ane e nneaneas 5958
Figure 19. B o =T T L L= = o] il o 1o) PP 6059
Figure 20. Single-Action Activity (ASYNCRIONOUS) ...uiiiiiiiiii i e aaeeaeas 8887
Figure 21. Two-Action Activity (ASYNCAIONOUS) ...uiitiii i e eanaaaens 8988
Figure 22. Single-Action Activity (SYNChronouUS) ...cviiiiiii e 9196
Figure 23. Two-Action Activity (SYNChIONOUS) viuiiiii i e e aaaaaeas 929+
Tables

Table 1. Preamble ElemMEntS. .. 19
Table 2. Delivery Header EIEMENESttt e e e e e e e e e e aeans 21
Table 3. Service Header ElementS. .ot et 26
Table 4. (@0 a1 =T 1 fl o Yo=Y T] T V=1 LU 1S 424t
Table 5. Debug Header ParameterS. ...ttt et e e e e e e e e 6867
Table 6. SN Cel=] ol o] o I = o o] o @o Lo [T T PP 8584
Table 7. Notification of Failure SCENAMIOS ..iviii ittt i i i i isertesareaaaeaaneens 9392
Table 8. Transport-Independent MapPiNgsS . ..c.ceerereieiniiiiieeae e eeeaeeaeaeraraaaanaaas 10099
Table 9. Transport-Dependent MapPiNgS. ueeeerertitinaaeeaeaeiererararnseareeeaererarnananss 101166
Examples

Example 1. Preamble INStanCe. ... a 19
Example 2. Delivery Header INSTanCeoiiriiiiiiiiii e e e 22
Example 3. Service Header Instance (USiNg PIP 3A4) ..ot et e e ees 31
Example 4. S/MIME ENVelOped MESSAG uiuiiuiititiitiiit it iitaese s aeasserasaeaase st ensnerneaeaneneanss 37
Example 5. S/MIME multipart/signed MESSageuuuiiriiiiiiiiiiii it e e e 37
Example 6. Packaged RosettaNet Business Message without Encryption........cccooviiiiiiiiinnnnn. 4443
Example 7. Packaged Payload Container Prior to Encryptionccoooiiiiiiiiiiiiiciice e 4645
Example 8. Encrypted Payload Container ...c.viuiiiiiiiiii i s e 4746
Example 9. Packaged Payload Prior t0 ENCryption......ciiiiiiiiiiiiii it aae e 4948
Example 10. ENncrypted Payload.......cciiiiiiiiiiii i et 5049
Example 11. Signed RosettaNet BUuSIiNESS MESSAGE ...uiviiiiiiiiiiiiiii i e anaaaeaes 525+
Example 12. HTTP Post of a RosettaNet Message......cooviiiiiiiiiiiiic e 6362

vi ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, Implementation Framework Concgptﬂg'm{w

Example 13. HTTP Post of Unsigned RosettaNet Message.........ccoviiiiiiiiiiiiiiiee e 63
Example 14. HTTP Post of Signed RosettaNet MeSsage.......cocvviuiniiiiiiiiiiiii e e 64
Example 15. HTTP SynChronOUS RESPONSE .. .uuiuiuieiiiiieieieeeeeee et ee e e e s e s s e e e e e eae e eneans 66
Example 16. RosettaNet Message Encased in SMTP ENVEIOPEoviniiiiiiiiiiiiiiiieee e 71
Example 17. Unsigned RosettaNet Message in SMTP ENVelope.......cociiiiiiiiiiiiiiiiiiiiieeeee e 71
Example 18. Signed RosettaNet Message in SMTP ENVEIOPE.......ouivieiiiiiiiiiiiineee e ee e 72

©2001 by RosettaNet. All rights reserved. vii

Release-for-ValidatienValidated 13 July 2001Section 1, Implementation Framework Concgp%'m{w

Version History

Version 01.00
Version 01.00.01
Version 01.01.00

8 June 1999
8 July 1999
30 December 1999

Release 02.00.00 3 January 2001
Release 02.00.00A 25 April 2001
Release 02.00.00B 07 May 2001
Release 02.00.00C 25 June 2001
Validated 02.00.00 11 July 2001

Release.
Release.
Release.

Release for Validation.

Validation Update (Limited Distribution).

Validation Update (Limited Distribution).

Validation Update (Limited Distribution).

Validated Specification.

©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, Implementation Framework Concgptﬂg'm{w

Preface

Purpose of the Document

This document is designed to assist e-business system implementers and solution
providers who wish to create or implement interoperable software application
components that cooperatively execute RosettaNet PIPs. The document does this by
specifying the exchange protocol that enables participating supply chain members to
implement RosettaNet PIPs.

The result of these specifications should be to enable two RosettaNet objectives:

e Streamline Execution: RosettaNet needs to facilitate the rapid development of
Partner Interface Processes (PIPs).

e Accelerate Adoption: RosettaNet needs to facilitate the rapid development of
e-business applications that execute RosettaNet-compliant PIPs.

Intended Audience

1. The primary audience for this document is software engineers who will be
developing RosettaNet-compliant networked software applications that can
interoperate with RosettaNet-compliant networked software applications
developed by other companies. These applications will cooperatively execute
RosettaNet e-business PIPs.

2. The secondary audience is system architects, including:

a. Those within implementing companies who must integrate their architectures
with RosettaNet architectures and applications; and

b. Those who volunteer to participate in RosettaNet projects to create additional
RosettaNet e-business specifications.

Prerequisites

RosettaNet assumes that the audience will be familiar with or have knowledge of the
following:

¢ General Internet protocols,

e MIME and S/MIME,

o Digital signatures and the Secure Socket Layer (SSL),
e Extensible Markup Language (XML),

e BNF grammar specification syntax,

©2001 by RosettaNet. All rights reserved. xi

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

e All the external references listed in “References.”

Scope of the Document

The focus of this document is specification of the core of the RosettaNet
Implementation Framework; that is, packaging, routing, and transferring of
RosettaNet business messages (including security aspects), as well as specification of
business signal messages used in the execution of RosettaNet Partner Interface
Processes or PIPs.

While it provides sufficient business and technical background to understand the
context for the implementation framework, the actual specification of the
implementation framework core is the focus of this document.

This document does not provide either user documentation or a detailed architectural
treatise. This document subsumes previous versions, including Technical Advisories
that pertained to previous versions.

Structure of This Document

This document is an implementation specification for the RosettaNet networked
application architecture. It contains the following sections:

e Section 1, “Introduction” has two parts:

e “Business Background” introduces new business concepts that provided
requirements or otherwise influenced the development of this version of the
implementation framework.

e “Technical Background” introduces new technical concepts that influenced
the development of this version of the implementation framework.

e Section 2, “Technical Specifications” has six parts:

“RosettaNet Business Message Components” enables the implementer to
understand what is needed to populate the various parts of the RosettaNet
Business Message.

e “Security Provisions and Trading Partner Authentication” specifies the use of
S/MIME and establishes norms for use of digital signatures.

e “RosettaNet Business Message Packaging and Unpackaging” specifies how
the implementer assembles the defined message components and how the
recipient extracts those components.

e “RosettaNet Business Message Transfer” specifies transport or transfer
protocols for RosettaNet Business Message exchange, and specifies which are
mandatory and which are optional; additionally, it provides debug header
specifications for use in certain situations.

Xii ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, Implementation Framework Concgptﬂg'm{w

e “Business Signal Specifications & Process Control PIPs” identifies and
specifies current business signals, as well as PIPs that are used in controlling
the process of PIP business exchanges.

o “Flow of RosettaNet Business Messages” specifies the role of business action
messages and business signals in the choreography of a PIP.

e There are several appendices:

e Appendix A, “Key Differences between RNIF 1.1 & RNIF 2.0” outlines
features that are either new in RNIF 2.0 or that have been substantially
changed from RNIF 1.1.

e Appendix B, “Required PIP Metamodel Changes” identifies the changes that
are expected to the existing PIP metamodel in order to take full advantage of
features added in RNIF 2.0.

e Appendix C, “IFV Mapping from BOV and FSV” serves to remove
“boilerplate” material from the individual PIP specifications and place it in
the RNIF.

e Appendix D, “Importance of Transfer Independence” supports the rationale
for transport independence via several example scenarios.

e Appendix E, “Anticipated Futures” describes some promising technologies
that may be useful in future versions of the RNIF.

e Appendix F, “Additional Examples” offers more extensive examples of PIP
exchanges via the RNIF than are present in the specification sections.

e Appendix G, “References” presents both RosettaNet and other documents that
are cited in this document.

e Appendix H, “Glossary” gives definitions for key words used in this
document.

Use of Normative Specifications

The RosettaNet Implementation Framework specification incorporates by reference
certain normative standards or specifications from non-RosettaNet sources. These
documents are referenced in the text and are listed in the “References” appendix of
this document.

This document does not restate material from the referenced document unless this
document is changing a part of the referenced document. The reader is expected to
refer to the relevant original source document for the text of referred specifications.

©2001 by RosettaNet. All rights reserved. xiii

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

Style Conventions

This specification uses a number of conventions to convey specific meanings. These
fall into three categories: typographical conventions, language conventions, and
graphical conventions. They are identified below.

Typographical Conventions

The use of a monospaced font indicates presentation of a code fragment.

Within the monospaced font, the use of i talics indicates that the text so
presented is text to be replaced by the user or the system, depending upon the context
of the code fragment.

Note: In sections 2.3 (“RosettaNet Business Message Packaging and Unpackaging”)
and 2.4 (“RosettaNet Business Message Transfer”’), the MIME convention of using
angle brackets (“<>"") within the monospaced font to enclose text that is to be replaced
has been followed. In these sections, no XML code (which uses angle brackets
differently) is presented.

Language Conventions

This specification adopts the conventions expressed in the Internet Engineering Task
Force’s (IETF) Request for Comments (RFC) 2119 “Key Words for Use in RFCs to
Indicate Requirement Levels.” The key words “MUST,” “MUST NOT,”
“REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in section 2 of this document are
to be interpreted as described in RFC 2119.

Formatting Conventions

Examples are used throughout the document to enhance understanding. Therefore,
they are formatted for readability. This may mean that lines breaks and extra white
spaces have been used in some examples.

Graphical Conventions

Figures that show the message components, as well as the packaging and unpackaging
of those components, use various line types to indicate whether something is a
concrete component (thin black outline) or a logical component (thick grey line). Ifa
component or packaging method is optional, the line is broken instead of solid.

Concrete Component

1
1 Optional Concrete Component
|

Logical Component

Xiv ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, Implementation Framework ConceptPackaging-the-RoesettalNet

Backward Compatibility

The following are statements on backward compatibility between RNIF 1.1 and
RNIF 2.0:

1. RNIF 2.0 is not backward compatible with RNIF 1.1. That is, RNIF 2.0 is not
simply a compatible superset of RNIF 1.1. Software solutions that implement
only RNIF 2.0 WILL NOT be interoperable with software solutions that
implement only RNIF 1.1 and vice versa.

If a software solution that implements only RNIF 2.0 receives an RNIF 1.1
message, then the solution is not expected to do anything with that message. It
MAY simply choose to ignore that message.

Subsequent releases of RNIF 2.x will be backward compatible with previous
releases of RNIF 2.x. That is, RNIF 2.1 will be backward compatible with RNIF
2.0, as will RNIF 2.2, 2.3, etc.

2. All PIPs published prior to the publication of RNIF 2.0 MUST work with RNIF
1.1 and SHOULD work with RNIF 2.x.

3. PIPs published after the publication of RNIF 2.0 MUST work with RNIF 2.x and
MAY work with RNIF 1.1.

4. RosettaNet will issue a separate communication regarding its “retirement” policy
for obsolete releases.

©2001 by RosettaNet. All rights reserved. XV

Release-for-ValidatienValidated 13 July 2001Section 1, Implementation Framework Concgptﬂg'm{w

1 Introduction

RosettaNet’s mission is to facilitate electronic exchange of standard business
documents between trading partners, adhering to the Partner Interface Processes
(PIPs) specified and standardized by RosettaNet. Fundamental to this are the
RosettaNet Implementation Framework (RNIF), the PIP specifications, and the
business and technical dictionaries. This document supplies the specification for the
RosettaNet Implementation Framework; separate documents provide PIP and
dictionary specifications.

This introductory section provides both business and technical background
information that is intended to help the reader make full use of the actual
specifications contained in section 2 of this document.

1.1 Business Background

Since the publication of version 1 (and its revisions) of the RosettaNet Implementation
Framework (RNIF), changes have occurred both in the way that RosettaNet sees the
structure of the framework and in the e-business environment in which RosettaNet
members find themselves. This section touches upon those changes and gives the
business rationale for certain changes that have been made to the RNIF specifications.
See also the “Technical Background” sub-section for additional influences on these
specifications.

1.1.1 Implementation Framework Concept

In previous versions of the implementation framework specifications, the subject
matter has been limited to specifying the format and elements of the common parts of
PIP messages (e.g., headers); and the packaging, routing, and transport of all PIP
messages and business signals. It has also included security to a limited extent.

RosettaNet has since realized that this is only a portion of a useful framework that
members would need to create robust implementations. Some additional elements of a
robust framework would include Trading Partner Agreements and directories or
registries.

This document, therefore, covers only a portion of the total RosettaNet
Implementation Framework — although it is a very large and important part. Figure 1
shows the relationship of the Implementation Framework and its constituent parts to
the rest of the RosettaNet specifications in a trading partner implementation.

©2001 by RosettaNet. All rights reserved. 1

RosettaNet Implementation Framework: Core Specification

Release for Validation 13 July 2001

Private /Public
Process | Process

Message
Unpacking

Message
Packing

Message Creation
Message Processing

Transfer,
Routing,
Packaging

Security
Signals

TPA

Business

Technical

Message
Transfer

Public Private
Process | Process
@ Agree & —
Execute
Trading
partners agree

on PIP to use,
perform TPA
and execute a
PIP instance as
a sequence of
business
messages and
signals

® Enable
Trading Partners
use RosettaNet
specifications

(RNIF, Dictionaries,

PIPs) to enable
common public
business process
environment

Message
Unpacking

Message
Packing

[[=

Message Processing

ge Creation

Transfer,
Routing,

Packaging
Security
Signals

TPA

Business

Technical

Trading Partner A Trading Partner B

Figure 1. RosettaNet Specifications in a Trading Partner
Implementation
1.1.2 Scalability of RosettaNet Specifications

As RosettaNet specifications are increasingly implemented within trading partners’
enterprises, the issue of scalability (for increasing volumes) and applicability to
related e-business transactions that are not directly addressed by current RosettaNet
supply-chain-specific PIPs arises.

Similarly, solution partners face the challenge of creating and maintaining products
that must support multiple approaches and sets of specifications to e-business within
many supply chains.

Therefore, RosettaNet has recognized the need for increasing members’ ability to
interoperate across supply chains and achieve greater proliferation of e-business
processes. The approach to achieving this is to search for, foster, and participate in
those industry initiatives that are designed to support a wider set of businesses. This is
particularly true in the implementation framework arena.

For this version of the RosettaNet Implementation Framework, which is designed to
support members’ current implementation needs, particular attention has been paid to
using existing well-tested industry standards wherever possible. Where there is no
such existing standard, due recognition of the directions being taken by emerging
cross-industry initiatives has informed the decisions reflected in this document.

2 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, Public vs. Private Procw

The intent has been to pave the way for RosettaNet ultimately to converge with or
adopt a broader framework, and therefore for members to gain the benefit of a more
broadly applicable implementation.

1.2 Technical Background

This section introduces several key technical concepts and assumptions that pertain to
all the RosettaNet specifications and are necessary to make effective use of the
specification part of this document. See also the “Glossary” in this document.

1.2.1 Public vs. Private Processes

An organization’s business processes can be divided into two broad categories. The
business processes that are internal to the organization are called “private processes,”
while the business processes that involve interactions with trading partners are known
as “public processes.”

The public processes are business processes through which partners conduct
e-business. Within the context of RosettaNet, these are the partner interface processes
that are visible between trading partners. Public processes implement the RosettaNet
PIP specifications to exchange standard business documents over standard Internet
transfer protocols, as specified by the RosettaNet Implementation Framework.

Within trading partner enterprises, private processes interface with public processes
and with back-end business systems as needed to facilitate e-business exchanges
between trading partner organizations.

Back-end Private Public Public Private ~
processes processes processes processes Back-end
Figure 2. Private vs. Public Processes
1.2.1.1 Interoperability Considerations

For public processes to be interoperable, the information format and the sequence of
message exchanges as executed by the public processes must conform to RosettaNet
specifications. However, organizations may wish or need to implement new private
processes or modify existing private processes (that mesh the back-end systems to the
public processes) for this purpose.

©2001 by RosettaNet. All rights reserved. 3

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

1.2.2 PIPs and the Implementation Framework

A major part of RosettaNet’s standardization effort is alignment of business processes
between trading partners in a given supply chain (such as the IT Products and
Electronic Component supply chains). RosettaNet specifies these as Partner Interface
Process (PIP) specifications.

RosettaNet divides the entire e-business supply chain domain for which PIPs are
specified into broad classifications called “clusters.” Each cluster is further sub-
divided into two or more “segments.” Each segment comprises several PIPs. PIPs
contain one or more Activities, and Activities in turn specify Actions. An example of
this relationship follows:

e CLUSTER 3: Order Management
Segment A: Quote and Order Entry
e PIP 3A4: Manage Purchase Order
e Activity: Create Purchase Order

e Action: Purchase Order Request
e Segment B: Transportation and Distribution
e Segment C: Returns and Finance

e Segment D: Product Configuration

Each PIP in a segment represents a well-defined business process subset, and is named
with the cluster, segment, and sequence number of the PIP in the segment. For
example the Manage Purchase Order PIP is fourth in sequence in Segment A (Quote
and Order Entry) of the Cluster 3 (Order Management). Hence the Manage Purchase
Order PIP is identified by the name PIP3A4.

PIPs include specification of partner business roles (Buyer, Seller etc.); business
activities involved between the roles; and type, content, and sequence of business
documents exchanged by the role-interactions while performing these activities. They
also specify the time, security, authentication, and performance constraints of these
interactions. Structure and content of the business documents exchanged is specified
through XML Document Type Definitions (DTDs) and associated Message
Guidelines.

Trading partners that participate in the PIP exchange business documents that conform
to the DTDs and Message Guidelines in the subject PIP specification, using network
protocols that are specified and supported by the RosettaNet Implementation
Framework.

Figure 3 is an example PIP interaction diagram that shows the business roles,
messages, and their sequence of exchange in the PIP.

4 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, PIPs and the Implementation Frameworkpﬁg{;ﬂgw

Buyer Seller
1. PurchaseOrderRequest >
2. ReceiptAcknowledgement
3. PurchaseOrderAcceptance
4. ReceiptAcknowledgement >

Figure 3. Sample PIP Interaction Diagram

1.2.2.1 Action and Signal Messages

The messages involved in a PIP business document exchange can be classified into
two broad categories — “business action” messages and a “business signal” message.

Business actions are messages with content that is of a business nature, such as a
Purchase Order or a Request For Quote. The DTDs and the associated Message
Guidelines for business actions are specified as part of the corresponding PIP
specification.

Business signals are positive and negative acknowledgment messages that are sent in
response to business actions. Business signals are specified by and are part of the
RosettaNet Implementation Framework. RNIF 2.0 contains one positive and one
negative business signal.

Note: Only business actions are acknowledged. Business signals are never
acknowledged.

POSITIVE SIGNALS

Receipt-Acknowledgment: This message is a positive acknowledgment of receipt of a
Business Action message. Sent when an action message is received by the trading
partner and is found to be a structurally and syntactically valid RosettaNet business
action message. This message is sent only if it is required by the PIP and it is almost
always required.

Note: In RNIF 2.0, RosettaNet eliminated the Acceptance Acknowledgment Signal,
which had not been used in any of the PIPs.

The PIP specification that specifies the business actions also specifies which business
signals are required. In section 2.6, RNIF provides detailed guidelines for PIP
developers regarding when a specific kind of signal should be sent.

©2001 by RosettaNet. All rights reserved. 5

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

NEGATIVE SIGNALS

Exception: This business signal is a negative acknowledgment message that is sent to
indicate an error. (See also the Notification of Failure PIP in section 2.5.)

In RNIF 2.0, there is only one exception message (versus three in RNIF 1.1). In RNIF
2.0, individual exceptions have been converted to exception types within the same
exception signal. This change allows for faster implementation of additional or
changed types. The following “exception types” are equivalent to the separate
exceptions that were used in RNIF 1.1.

e Receipt-Acknowledgment-Exception: This is a negative acknowledgment of
receipt of a business action message. It is sent when a message is received by the
trading partner and is found to be a structurally or syntactically invalid RosettaNet
business action message.

e General-Exception: This is a negative acknowledgment message that is sent to
indicate an error other than the above. For example, in RNIF 1.1 this signal was
sent when an error was detected during sequence validation or while performing
the requested action. (See also the Notification of Failure PIP in section 2.5.)

RosettaNet recommends that authentication or authorization failures should not be
responded to with exception messages. This is to minimize the risk of security
attacks. See section 2.3.4 for further details.

1.2.3 PIP Message Exchange Models

Current PIP specifications are based on a Peer-to-Peer business message exchange
model, between the RosettaNet networked applications (and hence the trading
partners). That is, RosettaNet messages are exchanged between two trading partners
directly. This peer-to-peer mode of message exchange relies on prior knowledge of the
peer network entity identities and their addresses, which should be exchanged by the
trading partners in advance. In RNIF 2.0, RosettaNet is introducing a mechanism to
facilitate exchange of these messages through a third-party routing entity such as a
hub (a.k.a. intermediary). However this mechanism is still based on the peer-to-peer
message exchange model as far as the PIP is concerned. That is, the business entities
involved in the exchange are still two: the originator and the final recipient, with the
Hub simply facilitating the routing and delivery of the messages. RosettaNet is
investigating other message exchange models for potential future use by PIP
specifications. These include: Broadcast to all trading partners together; Publish and
Subscribe mode of message exchanges between trading partners; and Multicast to a
select subset of the trading partners.

1.2.4 PIP Metamodel

A PIP specification includes three major parts. These are the Business Operational
View (BOV), the Functional Service View (FSV), and the Implementation Framework
View (IFV).

Each PIP performs one or more discrete business activities, as specified in the PIP
blueprints by the business community. These activities are identified in the BOV of

6 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, PIP Metamodel

the PIP specification as described below. For example, the BOV of PIP 3A4 shows
three separate business activities: Create Purchase Order, Change Purchase Order,
and Cancel Purchase Order.

Each activity in the BOV translates into Business Actions and Signals that are
exchanged between network components as specified in the FSV part of the PIP
specification as described below. The IFV specifies the format (XML) and the
corresponding guidelines for the actions and is further described below.

1.2.4.1 Business Operational View (BOV)

The Business Operational View (BOV) of a PIP specification captures the semantics
of business entities and the flow of business information between Roles involved in
the exchange as they perform business activities. The content of the BOV section of a
PIP specification is based on the PIP Blueprint document created for RosettaNet's
business community.

Figure 4 is an example BOV flow diagram (using PIP 2A3, “Query Marketing
Information™).

:Buyer :Seller

. Start

<<QueryResponseActivity>> \/r <<SecureFlows>
Query Marketing Inform ation Marketing Inform ation j

Response

<<SecureFlow>> P Market
Marketing Inform ation rocessv arketing
Inform ation Query

Query

[FAIL]

FAILED

SUCCESS]

Figure 4. Sample BOV Flow (Using “Query Marketing Information” PIP)

The diagram shows that the PIP involves the exchange of business information
between “Buyer” and “Seller” Roles. The specific activity involved in the PIP is
“Query Marketing Information” and it is a “QueryResponseActivity” type of activity.
The flow also shows that “Query Marketing Information” activity involves the flow of
the “Marketing Information Query” business action from the “Buyer” to the “Seller”
and a subsequent flow of the “Marketing Information Response” business action from
the “Seller” to the “Buyer”. The <<Secure Flow>> stereotype in the boxes containing
the business actions implies that the business action MUST be transported from sender
to recipient in a secure way.

©2001 by RosettaNet. All rights reserved. 7

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

The BOV part of the PIP specification also contains the description and type of the
Business Roles involved in the BOV flow. A role type can be one of Organizational,
Employee, or Functional. When two trading partners execute a business process
within the RosettaNet framework, each partner performs a role. As the name implies
the “Organizational” role is for playing the role of an “organization” such as an
enterprise, a company, or a factory to cite few examples. The “Employee” role is used
in business interactions that are performed by employees of an organization. The
“Functional” role is for the cases when the interaction can be performed by either an
employee or an organization.

The Business Activity Control section of the BOV contains business activity
performance control specifications. For each activity in the PIP, this section specifies
whether a “Receipt Acknowledgment” is required,; if so, it also specifies whether it
should be a non-repudiable acknowledgment and the time within which the
acknowledgment should be sent. This section also contains other specifications, such
as whether “Authorization is Required” to perform the activity.

Refer to the PIP specification for complete details of the BOV part of that PIP
specification.

1.2.4.2 Functional Service View (FSV)

The Functional Service View (FSV) part of a PIP specification is derived from the
BOV and specifies the network component design and the interactions between the
network components as they execute the PIP. The network components specified in
this section of the PIP are also known as the RosettaNet “services.”

Note: In RNIF 2.0 onwards, the “agent” network component and related interaction
dialogs have been removed from the Functional Service View part of the PIP
specifications. See Appendix C of this document for details.

: Buyer : Seller

‘ 1. request(:PurchaseOrderRequestAction)‘

1.1. signal(:ReceiptAcknowledgement)

[~

2. response(:PurchaseOrderAcceptanceAction T

2.1. signal(:ReceiptAcknowledgement) J

Figure 5. Sample FSV Network Component Dialog

8 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, RosettaNet Business Message Overview:

Figure 5 identifies “Buyer” and “Seller” as two RosettaNet services (network
components). It also depicts the interactions between them, namely, the “request” and
“response” actions and the corresponding Receipt-Acknowledgment signals.

The FSV also defines the message exchange controls for each of the actions and
signals involved in the dialog. For actions, this includes specification of time within
which an Acknowledgment of Receipt signal should be sent; time within which a
response to the action should be sent (if applicable); whether authorization is required
to perform the action; and whether a secure transport should be used to transmit the
action to the recipient.

Refer to the PIP specification for complete details of the FSV part of that PIP
specification.

1.2.4.3 Implementation Framework View (IFV)

The Implementation Framework View (IFV) specifies the action message formats and
communication requirements between network components as supported by the
RosettaNet Implementation Framework. The communication requirements include
specifications on the requirement for secure transport protocols such as SSL and
digital signatures. For message formats, RosettaNet distributes XML DTDs and
Message Guidelines for the action messages that are exchanged when the PIP is
executed.

The RNIF 2.0-compliant PIP specifications include the BOV and FSV specifications
and the XML Message Guidelines part of the IFV. However, other aspects of [FV
such as the communications requirements between peer network components are no
longer specified in the PIP specification, as these aspects can be derived from the
BOV and FSV parts of the PIP specification in a well-defined and consistent fashion.
Refer to AppendixBAppendix C in this document for a description of how the BOV
and FSV sections of a PIP specification can be mapped to such Implementation
Framework View (IFV) aspects.

1.2.5 RosettaNet Business Message Overview

This section introduces the complete RosettaNet Business Message, as well as other
parts of a completely packaged business message.

1.2.5.1 Parts of a RosettaNet Business Message

The individual business documents involved in a PIP (i.e., action and signal messages)
are exchanged in a container that packs together other related entities such as headers,
attachments and digital signatures. This container with its constituent parts is the basic
unit of exchange between two RosettaNet end-points, and is known as a “RosettaNet
Business Message.” Section 2 of this document gives the complete specification of the
RosettaNet Business Message format and the corresponding packaging and
unpackaging aspects. Below is an introduction to the basic structure and components
of the RosettaNet Business Message.

©2001 by RosettaNet. All rights reserved. 9

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

MIME multipart/related

| Preamble Header

| Delivery Header D>—P Headers

| Service Header

Service Content
(Action / Signal Message)

P Payload

—T— \/

RosettaNet
Business-Message

Figure 6. Parts of a RosettaNet Business Message

A RosettaNet Business Message always contains a Preamble header, a Delivery
Header, a Service Header, and a Service Content. Service Content comprises an action
message or a signal message. If Service Content is an action message, one or more
attachments may be included. As shown, the headers and Service Content are
packaged together using a MIME multipart/related construct. (This is similar to the
RNIF 1.1 packaging scheme.) A RosettaNet Business Message can optionally be
digitally signed. In RNIF 1.1, the RosettaNet Object (RNO) format was used for this
purpose. However RNIF 2.0 does away with the RNO format and uses the standard
S/MIME mechanism in its place. Refer to section 2 for details on the use of S/MIME
for digital signatures and also for complete details of the Preamble and Service Header
and their constituent elements.

1.2.5.2 Third-Party (Non-RosettaNet) Service Content

As described above, the Service Content contains either an action message or a signal
message. A signal message must always be a RosettaNet-defined signal message
instance. However, for action messages, RNIF 2.0 provides the option of shipping
business action messages in a third-party defined format. The RNIF 2.0 Service
Header now includes additional fields that facilitate this. For example, the header now
includes fields that identify the “standard body” and the “version” of the specification
to which the action message conforms.

Only action messages (also known as “business content™) can be of non-RosettaNet
origin. These messages must still be exchanged in a RosettaNet-defined PIP and must
be sanctioned by RosettaNet by explicit identification of the sanctioned third-party
action messages, in the PIP specification. Additionally, trading partners need to agree
in advance to exchange third-party business content (for example, through a Trading
Partner Agreement). This agreement would include the PIP payload binding
information (i.e., which third-party business content would be used as a replacement
for a particular action message in a PIP).

10

©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 1, Signals vs. Process Control PIPW

If this feature is not made available in a solution, the solution will not be deemed non-
compliant. Similarly, a receiving trading partner MAY not wish to use this feature.
This is also acceptable.

Refer to section 2 and to Appendix C for complete details.

1.2.5.3 Routing RosettaNet Business Messages through Hubs

In this version of RNIF, trading partners have the option of exchanging business
messages directly with each other or through intermediary third-party routers (such as
hubs).

To facilitate routing messages through hubs, RNIF 2.0 introduces a new type of
header called the Delivery Header. The Delivery Header contains elements for the
sending and receiving trading partner identities, the date and time stamp of the
message, and a globally unique tracking ID. An instance of the Delivery Header is
always present in a RosettaNet Business message and MUST be added by the initiator
of the message.

All parties involved in routing the message from its originating point to the (eventual)
destination, including any intermediaries if involved, use the information in the
Delivery Header.

In RNIF 2.0, parts of the RosettaNet Business Message can be encrypted, including
the Service Content and Service Header parts. In order for third-party hubs that may
not have access to the encrypted Service Header to be able to route the message, the
delivery-related elements are now part of the Delivery Header, which is never
encrypted.

The tracking ID element of the Delivery Header and the message creation date and
time stamp element help all parties involved in the message path to track the message
in a globally unique fashion.

The Delivery Header also contains elements for specification of other requirements,
such as whether a secure transport must be used to transmit the message between the
nodes.

Note all headers namely, Preamble, Delivery and Service Headers, are always present

in the message with only one instance of each (see Figure 6). Specifically, there is
always one instance of the Delivery Header, as it is created by the originator/sender of |
the message and stays unaltered (along with all other components of the message) as it
is routed and delivered to the final recipient.

For more details on the Delivery Header please refer to section 2 of this specification.

1.2.6 Signals vs. Process Control PIPs

Signals are used between two peers to communicate certain “events” within a PIP
instance, such as “receipt and successful validation of a message” (Receipt
Acknowledgment), “receipt of an out of sequence message” (Exception with a type of

©2001 by RosettaNet. All rights reserved. 11

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

“General Exception”), or “receipt of a message that has invalid grammar” (Exception
with a type of “Receipt Acknowledgment Exception”).

Process Control PIPs, on the other hand, are used to communicate process states
outside of the context of the current process instance. An example is the 0A1
“Notification of Failure” PIP. A new instance of the 0A1 process is started when
exceptions happen under a specific condition (namely, when the process is in
“execution” state at one partner’s system and may have possibly reached a
“completed” state in the other partner’s system) during the execution of any other
process.

1.2.7 Network Application Model

The RNIF specifies the transfer and security level protocols to be used and the format
of the RosettaNet business messages that are exchanged by the networked
applications. The following diagram captures the RosettaNet networked application
protocol stack when exchanging RosettaNet business messages.

Preamble Header \
Delivery Header

Service Header
Process Control
Activity Control
Action Control RosettaNet
Business Message
in MIME/S-MIME
message format

Service Content
Action Message/Signal Message
Optional Attachment(s)

Optional Digital Signature

HTTPS Other
HTTP SMTP Transfer
Protocols
SSL
Transport and Lower layers Trg;z;grt
(TCP/IP protocol stack) Protocols

Figure 7. Network Application Model

1.2.8 Authentication, Authorization and Non-Repudiation

99 ¢¢

This section explains the concepts of “authentication,” “authorization,” and “non-

repudiation” within the context of RNIF 2.0.

12

©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 1, Authentication, Authorization and Non-Rgpudiétioanj

1.2.8.1 Authentication

Authentication within the context of RNIF 2.0 is the act of making sure that the sender
of a RosettaNet Business Message is who the sender claims to be. This is
accomplished by requiring the sender of the message to digitally sign the message. In
RNIF 2.0, a RosettaNet Business Message is digitally signed following the S/MIME
IETF (RFC 2311) specification. See section 2.2 for further details.

The PIP specifications specify whether the messages exchanged must be digitally
signed. If so, then the sending partner is required to digitally sign the messages sent to
its partner. The receiving partner authenticates the message sender by following the
standard S/MIME and PKCS mechanisms to verify the digital signatures. See section
2.2 for more details.

1.2.8.2 Authorization

Authorization is the act of making sure that the sender of a message is permitted or
authorized to send the subject message to the receiving partner. The requirement on
Authorization of message exchanges in PIP is specified in the corresponding PIP
specification. The trading partners must establish agreement between themselves in
advance, by identifying the PIPs they would execute between themselves and the
Digital Certificates that would be used to sign the messages exchanged. Each message
exchanged must also be digitally signed using the S/MIME mechanism as described
earlier.

Authorization is typically a two-step process. The first step is making sure that the
sending partner (as identified in the Delivery and Service Headers) is authorized to
send the subject message (PIP). The second step is making sure that the sending
partner’s organization, as identified by the digital signature on the message, is
authorized to send the subject message.

See section 2.2 for further details.

1.2.8.3 Non-Repudiation

Non-Repudiation is the mechanism for making sure that an originating trading partner
can not deny having originated and sent a message (called “Non-Repudiation of
Origin and Content”) and that a receiving trading partner cannot deny having received
a message sent by its partner (called “Non-Repudiation of Receipt”). Non-repudiation
requirements are explicitly called out in PIP specifications.

NON-REPUDIATION OF ORIGIN AND CONTENT

For the purpose of Non-Repudiation of Origin and Content, the originating partner of
a RosettaNet Business Message must digitally sign the message following the
S/MIME mechanism as described earlier.

The partner receiving the RosettaNet Business Message must store the message in
original form for a mutually agreed period of time (typically three to seven years).

©2001 by RosettaNet. All rights reserved. 13

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

This prevents an initiating partner from later denying that they originated contents of a
Business Document.

NON-REPUDIATION OF RECEIPT

For the purpose of Non-Repudiation of Receipt, a signed Receipt-Acknowledgment
signal must be sent for the received RosettaNet Business Message. The
Acknowledgment message must be digitally signed and must also include an MDS5 or
SHA-1 digest of the message being acknowledged. Additionally the partner receiving
the acknowledgment must store the receipt and original message in their original form
for a mutually agreed period of time (typically three to seven years). This prevents a
responding partner from later denying that they received a Business Document.

14 ©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Introduction

2 Technical Specifications

This section contains the actual specifications approved by RosettaNet for
constructing and exchanging RosettaNet Business Messages. It begins with the
specifications for the various components of a RosettaNet Business Message, proceeds
to the packaging (and unpackaging) of such messages, and then specifies the various
transfer mechanisms for exchanging those messages. It also contains specifications for
security, for process control PIPs, and for RosettaNet business signals. Additionally, a
section on message flow is included.

2.1 RosettaNet Business Message Components

This section enables the implementer to understand what is needed to populate the
various parts of the RosettaNet Business Message. For simplicity, this section also
includes specifications for special headers needed to route the RosettaNet Business
Message for trading partners using an intermediary service provider (e.g., a hub).

2.1.1 Introduction

A RosettaNet Business Message consists of various components as shown in Figure 6.
Excepting attachments (if any), all the components in the RosettaNet Business
Message are XML documents.

This section provides the syntax, semantics, and descriptions for the various business
message components, such as the various headers used to transmit a RosettaNet action
message or a RosettaNet business signal. Compliant implementations MUST adhere
to these syntactic and semantic rules in order to ensure interoperability.

This section only describes the XML headers for action or signal messages. It does not
include the MIME headers used for packaging or the transfer headers used with a
particular transfer protocol. Refer to those appropriate sections (2.3 and 2.4) for
information regarding the MIME headers and the transfer headers.

2.1.2 XML Usage

Since the core of the RosettaNet Business Message is in XML, it is important to
clarify the usage of XML in the context of encoding and element validation.

2.1.2.1 Encoding Rules

For XML documents, RosettaNet permits both UTF-8 and UTF-16 encoding schemes.
Senders MAY choose either encoding based on the content of the XML document.
The receivers MUST be able to handle both encoding schemes. Subject to the
constraints of the chosen transfer protocol, the XML parts MAY be MIME content-
transfer encoded. See RFC 2376 and W3C’s XML specification for details.

©2001 by RosettaNet. All rights reserved. 15

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

2.1.2.2 Validation Rules

All elements MUST be validated against the DTD for the document type that contains
it, based on standard DTD grammar validation rules.

The following is the minimum level of validation that is required on each of the XML
body parts, namely, the Preamble, the Delivery Header, the Service Header, and the
Service Content.

1. The XML document MUST be compliant with its corresponding DTD.

2. Where an element’s data type and/or length is specified in the corresponding
RosettaNet Message Guideline, the element MUST be validated against these
specifications.

3. Where an element’s allowed list of values is specified in the Entity Instance
list in the corresponding RosettaNet Message Guideline, the element MUST
be validated against these specifications.

4. Where the cardinality specification of an element in the Message Guideline is
different from the corresponding specification in the DTD, the specification in
the Message Guideline is more accurate and MUST be adhered to.

5. Where the sequence or naming of an element in the Message Guideline is

different from the corresponding specification in the DTD, the specification in
the DTD is more accurate and MUST be adhered to.

5:6. Where a dictionary is present and the PIP requires Dictionary Validation, the
Service Content MUST be validated against the dictionary as a part of action
performance.

6.7.1f a message does not follow one or more of the above rules, then it MUST be
deemed invalid.

For elements with validation rules specified in the form of a list of valid or allowed
values, all these values are case sensitive (where not specified otherwise). Also, these
elements are to be treated as “white space sensitive.”

For example, if the allowed values are “Action” and “Signal” for an element or
attribute, then “action”, *“ signal”, “SIGNAL”, and “A ¢t o n” are all examples of
incorrect usage. The only allowed values are those that match an entry in the code list
exactly for case, spacing, and punctuation.

As a further example, suppose there is an element called “ShipToCountry”. If the
element is specified with a cardinality of 1, and if the only allowed value is “United
States of America” then the following is the only allowed XML instance of this
element.

<ShipToCountry>United States of America</ShipToCountrys>

The following are examples of incorrect usage:

<ShipToCountry>United States Of America</ShipToCountrys>
<ShipToCountry> United States Of America </ShipToCountrys>
<ShipToCountry>UnitedStatesOfAmerica</ShipToCountry>

16

©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, XML Usage

2.1.2.3 Constraints on Message Elements

The following constraints on RosettaNet-defined message elements have been
identified:

e Instance identifiers
Constraint: length constrained to maximum of 255 characters
e Date/time elements

Elements that refer to date and time MUST follow the format for date and
time as specified in the ISO 8601 specification. Specifically, RosettaNet has
chosen the format: CCY YMMDDThhmmss.sssZ , where "CC" represents the
century, "YY" the year, "MM" the month, and "DD" the day. The letter "T" is
the date/time separator and "hh", "mm", and "ss.sss" represent hour, minute,
and second respectively. The "Z" at the end of the date/time element indicates
Coordinated Universal Time. All elements of this format MUST be present.

e (Case sensitivity

All element names and element values are case-sensitive.

2.1.2.4 DTD Naming, Pathname Specification and Versioning

All XML documents which are based on specifications that include an associated
Document Type Definition (DTD) MUST reference the asseetated-DTD by specifying
the doctype element. The name of the DTD file as published by RosettaNet MUST be
specified, and MUST NOT be renamed differently. The doctype element MUST NOT |

specify any additional URL qualifiers that refer to a specific location where the DTD
file exists. Recipients of RosettaNet XML messages are responsible for configuring
their systems to find the appropriate DTD file.

Example: 2A5 MS ROl 00 TechInfoQuery.dtd

2.1.2.5 XML Namespace

A namespace attribute is present in all headers and business signal DTD files:
Preamble, Delivery Header, and-Service Header, Exception and Receipt
Acknowledgment.

This is a default attribute with the value "http://www.rosettanet.org/RNIF/V02.00/".

©2001 by RosettaNet. All rights reserved. 17

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

2.1.3 Header Structure and Format Specifications

This section describes the various headers that are sent along with a RosettaNet
business action message or a RosettaNet business signal message. Each of these
headers is an XML document, and each of them has a DTD.

The following are the various message headers:

e Preamble — This header identifies the standard with which this message structure
is compliant.

e Delivery Header — This header identifies message sender and recipient and
message instance information. This information is placed separately from the
Service Header to allow access to the information by a Hub when the Service
Header is encrypted.

o Service Header — This header identifies the PIP, the PIP instance, the activity, and
the action to which this message belongs.

The overall purpose of these headers is for the recipient to be able to:
o Identify the message as a RosettaNet Business Message;
e Identify the context of the message;

o Identify the sender for authentication and authorization.

2.1.3.1 Preamble Specification

The Preamble is used to identify the standard and the version of the standard with
which the message structure is compliant. All RosettaNet messages MUST have a
Preamble. The structure of the Preamble MUST follow the Preamble DTD.

The values of the elements in the Preamble are fixed by the sender of the first message
in the Activity. All subsequent messages in the activity MUST NOT change the
contents of the preamble.

DOCUMENT TYPE DEFINITION

<!ENTITY % common-attributes "id CDATA #IMPLIED" >
< !ELEMENT Preamble (
standardName ,
standardvVersion) >
<!ATTLIST Preamble xmlns CDATA #FIXED
"http://www.rosettanet.org/RNIF/V02.004" >
<!ELEMENT standardName
(GlobalAdministeringAuthorityCode) >
<!ELEMENT GlobalAdministeringAuthorityCode
(#PCDATA) >
< !ELEMENT standardVersion
(VersionIdentifier) >
<!ELEMENT VersionIdentifier
(#PCDATA) >

18 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Header Structure and Format Specificationspﬁﬁg{;ﬁgm

TREE STRUCTURE FROM MESSAGE GUIDELINE

1 1 Preamble
2 1 |-- standardName.GlobalAdministeringAuthorityCode
3 1 |-- standardVersion.VersionIdentifier

ELEMENT DESCRIPTION

Table 1 provides descriptions of the Preamble elements and special validation and
processing rules where applicable. Note that the Element Names have one-to-one
correspondence with the Element Tag Names, but are not exactly the same. The
element names have been formatted for readability, and white spaces have been
introduced. The official element descriptions appear in the separately published
Message Guideline associated with the Preamble DTD.

Table 1. Preamble Elements

Note: This table is provided to assist in understanding how this header works. For complete documentation on
these elements, consult the Message Guideline itself.

Special Validation and Processing

Element Description/Notes Rules

Global Administering Instance from set of codes identifying

Authority Code administrating authority.

Standard Name Identifies the name of the standard In the case of a RosettaNet-compliant
with which this message structure is message, the only allowed value is
compliant. “RosettaNet”.

Standard Version Identifies the version number of the When the Standard Name is
standard. “RosettaNet”, the Standard Version

MUST carry the version number of the
RNIF specification. For a message
compliant with RNIF 02.00, this value
MUST be “V02.00”.

Example 1. Preamble Instance

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Preamble SYSTEM "Preamble MS BV02_ 00.dtd"> |
<Preamble>
<standardName>
<GlobalAdministeringAuthorityCodes>
RosettaNet
</GlobalAdministeringAuthorityCodes>
</standardName>
<standardVersion>
<VersionIdentifier>v02.00</VersionIdentifiers> |
</standardVersions>
</Preamble>

VERSIONING NOTES

RNIF 2.0 invalidates the 1.1 version of the Preamble. The new version to use is
version 2.0 of the Preamble, which follows the DTD structure cited in this section.

©2001 by RosettaNet. All rights reserved. 19

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

A message that is compliant with RNIF 2.0 MUST have an XML document called
Preamble. This document MUST have been packaged according to the packaging
rules specified in section 2.3. The document MUST conform to the DTD cited above
and MUST have values in conformance to the applicable Message Guideline.

2.1.3.2 Delivery Header Specification

This header is added as a separate MIME part to specify route and message instance
information. This information is placed separately from the Service Header to allow
access to the information by a Hub when the Service Header is encrypted.

DOCUMENT TYPE DEFINITION

<!ENTITY % common-attributes "id CDATA #IMPLIED" >
< !ELEMENT DeliveryHeader (
isSecureTransportRequired ,
messageDateTime ,
messageReceiverIdentification ,
messageSenderIdentification ,
messageTrackingID) >
<!ATTLIST DeliveryHeader xmlns CDATA #FIXED
"http://www.rosettanet.org/RNIF/V02.00/4" >
< !ELEMENT isSecureTransportRequired (AffirmationIndicator) >
<!ELEMENT AffirmationIndicator (#PCDATA) >
< !ELEMENT messageDateTime (DateTimeStamp) >
< !ELEMENT DateTimeStamp (#PCDATA) >
< !ELEMENT messageReceiverIdentification (PartnerIdentification) >
<!ELEMENT PartnerIdentification
(domain? ,
GlobalBusinessIdentifier ,
locationID?) >
<!ELEMENT domain (FreeFormText) >
<! ELEMENT FreeFormText (#PCDATA) >
<!ATTLIST FreeFormText xml:lang CDATA #IMPLIED >
<!ELEMENT GlobalBusinessIdentifier (#PCDATA) >
| <!ELEMENT locationID (EreeFormText—Value) >
< !ELEMENT messageSenderIdentification (PartnerIdentification) >
< !ELEMENT messageTrackingID (InstanceIdentifier) >
<!ELEMENT InstancelIdentifier (#PCDATA) >
<! ELEMENT Value (#PCDATA) >

TREE STRUCTURE FROM MESSAGE GUIDELINE

DeliveryHeader
| -- isSecureTransportRequired.AffirmationIndicator
| -- messageDateTime.DateTimeStamp
| -- messageReceiverIdentification.PartnerIdentification
| |-- domain.FreeFormText

| |-- GlobalBusinessIdentifier
.1 | |-- locationID.FreeFormText—Value
|
|

=

[y

-- messageSenderIdentification.PartnerIdentification
| -- domain.FreeFormText

W WJ0 U WN R
ORrOoORORRR

[y

20 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Header Structure and Format Specificationspﬁ@gi‘_ngm

10 1 | |-- GlobalBusinessIdentifier
11 0..1 | |-- locationID.FreeFormText—Value
121 | -- messageTrackingID.Instanceldentifier

ELEMENT DESCRIPTION

Table 2 provides descriptions of the Delivery Header elements and special validation
and processing rules where applicable. Note that the Element Names have one-to-one
correspondence with the Element Tag Names, but are not exactly the same. The
element names have been formatted for readability and white spaces have been
introduced. (For example, the Element Name “Sent To” in the table corresponds to
the element with the tag name “SentTo”.) The official element descriptions appear in
the separately published Message Guideline associated with the Delivery Header
DTD.

Table 2. Delivery Header Elements

Note: This table is provided to assist in understanding how this header works. For complete documentation on
these elements, consult the Message Guideline itself.

Special Validation and

Element Name Description/Notes Processing Rules

Affirmation Indicator Used to indicate "Yyes" or "N#no" Valid values are “Yes” or “No”.
statements-(e-g--Serialized
Produet).

Date Time Stamp Specifies an instance in time.

Domain Identifies the area of applicability. For RNIF 2.0, the only allowed
(In this case, identifies content of value is “DUNS”. If this optional
the Partner ID, e.g., whether or not element is not present, the default is
is DUNS. “DUNS”.

Free Form Text Unformatted text.

Global Business Identifier The DUNS number of the trading
partner.

Instance Identifier A unique alphanumeric identifier

that represents a specific instance of
a business process, business
transaction, business action, or
business signal. The instance
identifier must be unique for a
particular instance of a business
process, business transaction,
business action and business signal.

13 99 113 29

Is Secure Transport Required Affirmative value indicates that the
next hub must transmit this message
securely.

Location ID Identifies a logical business location
associated with the trading partner.

Message Date Time The date and time associated with The timestamp MUST be generated
the creation of a message. as close to the time of first
attempted transport as possible.

©2001 by RosettaNet. All rights reserved. 21

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

Special Validation and

Element Name Description/Notes Processing Rules
Message Tracking ID Uniquely identifies the message for =~ MUST be unique within the context
tracking purposes. of the message sender.

Message Receiver Identification — Glebal BusinessldentifierIdentity
of party receiving message--and-an
" .] u] P ‘ IB'M'

Message Sender Identification Glebal Businesstdentifier-Identity
of party sending message;-and-an
E : ' . (13 ‘ T l)”'

Partner Identification Identifies a trading partner
associated with this message by
Global Business Identifier and
optional Location ID.

Value Identifies the locationID.

Example 2. Delivery Header Instance

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DeliveryHeader SYSTEM "DeliveryHeader MS BV02 00.dtd">
<DeliveryHeaders>
<isSecureTransportRequireds>
<AffirmationIndicator>yYes</AffirmationIndicators>
</isSecureTransportRequired>
<messageDateTime>
<DateTimeStamp>20001121T145200.000Z</DateTimeStamp>
</messageDateTime>
<messageReceiverIdentifications>
<PartnerIdentifications>
<domain>
<FreeFormText >DUNS</FreeFormText>
</domain>
<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifiers
<locationID>
<FreeFormTextValues>Santa Clara</EreeFormTextValue>
</locationID>
</PartnerIdentifications>
</messageReceiverIdentification>
<messageSenderIdentification>
<PartnerIdentifications>
<GlobalBusinessIdentifier>555123456</GlobalBusinessIdentifiers
<locationID>
<EreeFormTextValue>Hong Kong</EreeFormTextValues>
</locationID>
</PartnerIdentifications>
</messageSenderIdentification>
<messageTrackingID>
<InstanceIdentifier>543543</Instanceldentifiers>
</messageTrackingID>
</DeliveryHeader>

VERSIONING NOTES

This header is new in RNIF 2.0.

22 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Header Structure and Format SDecificatiMm'mw

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

An instance of this header MUST be added to the message being routed by the
initiating node.

The received message MUST NOT be modified in any form by the intermediary
nodes.

2.1.3.3 Service Header

The Service Header provides the process context for a message. It also provides

information about the-sender-ofthe-messagethe recipient-of the-message-whether the

message is a Test message or a Production message, who the PIP initiator is, ane
whether the seaderinitiator is te-be-treated-as-an known or “unknown partner-=, and
Quality of Service negotiation information (which is currently unused).

DOCUMENT TYPE DEFINITION

<!ENTITY % common-attributes "id CDATA #IMPLIED" >
<!ELEMENT ServiceHeader (ProcessControl) >
<!ATTLIST ServiceHeader xmlns CDATA #FIXED
"http://www.rosettanet.org/RNIF/V02.00/4" >
<! ELEMENT ProcessControl (
ActivityControl ,
GlobalUsageCode ,
partnerDefinedPIPPayloadBindingId? ,
pipCode ,
pipInstancelId ,
pipVersion ,
QualityOfServiceSpecification?,
(KnownInitiatingPartner |
UnknownInitiatingPartner)) >
< !ELEMENT ActivityControl (
BusinessActivityIdentifier ,
MessageControl) >
< !ELEMENT BusinessActivityIdentifier (#PCDATA) >
< ELEMENT MessageControl (
fromRole ,
fromService ,
inReplyTo? ,
Manifest ,
toRole ,
toService) >
<!ELEMENT fromRole (GlobalPartnerRoleClassificationCode) >
<!ELEMENT GlobalPartnerRoleClassificationCode (#PCDATA) >
<!ELEMENT fromService (GlobalBusinessServiceCode) >
<!ELEMENT GlobalBusinessServiceCode (#PCDATA) >
<!ELEMENT inReplyTo (ActionControl) >
<!ELEMENT ActionControl (
ActionIdentity ,
messageTrackingID) >
< !ELEMENT ActionIdentity (
GlobalBusinessActionCode ,
messageStandard? ,

©2001 by RosettaNet. All rights reserved. 23

| RosettaNet Implementation Framework: Core Specification

Release for Validation 13 July 2001

standardVersion?

Taycod
53

nTdentifier

< !ELEMENT
<! ELEMENT
< !ELEMENT
<!ATTLIST
< !ELEMENT
<! ELEMENT
< !ELEMENT
<! ELEMENT
< !ELEMENT

<! ELEMENT

<! ELEMENT
< !ELEMENT
<! ELEMENT
< !ELEMENT
<! ELEMENT
< !ELEMENT

<! ELEMENT

< !ELEMENT
<! ELEMENT
< !ELEMENT
<! ELEMENT
< !ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT
< !ELEMENT
<! ELEMENT

< !ELEMENT
<! ELEMENT

<! ELEMENT
< !ELEMENT
<! ELEMENT
< !ELEMENT
<! ELEMENT
< !ELEMENT
<! ELEMENT

< !ELEMENT
<! ELEMENT

Ar&eRtIE3e¥

7

)

>

GlobalBusinessActionCode (#PCDATA) >
messageStandard (FreeFormText) >
FreeFormText (#PCDATA) >
FreeFormText xml:lang CDATA #IMPLIED >

standardVersion

VersionIdentifier
messageTrackingID
InstanceIdentifier (#PCDATA) >

(
(

(VersionIdentifier) >

#PCDATA) >
InstanceIdentifier) >

Manifest (

Attachment>* ,
numberOfAttachments ,
ServiceContentControl) >
Attachment (

description? ,
GlobalMimeTypeQualifierCode ,
UniversalResourceldentifier) >
description (FreeFormText) >

GlobalMimeTypeQualifierCode (#PCDATA) >

CountableAmount) >

UniversalResourceldentifier (#PCDATA) >
numberOfAttachments (

CountableAmount (#PCDATA) >
ServiceContentControl (

(ActionIdentity |

SignalIdentity)) >

SignalIdentity (

GlobalBusinessSignalCode ,
VersionIdentifier
GlobalBusinessSignalCode (#PCDATA) >

toRole (GlobalPartnerRoleClassificationCode) >
toService (GlobalBusinessServiceCode) >
GlobalUsageCode (
KnownInitiatingPartner (PartnerIdentification) >

PartnerIdentification
domain?
GlobalBusinessIdentifier

’

locationID?) >
domain (FreeFormText
GlobalBusinessIdentifier (#PCDATA) >
locationID (EreeFormText—Value) >
UnknownInitiatingPartner (

PartnerIdentification
UniformResourcelLocator)

)

>

#PCDATA) >

(

)

’

>

’

>

UniformResourceLocator (#PCDATA) >
partnerDefinedPIPPayloadBindingId

(ProprietaryReferenceIdentifier) >
ProprietaryReferenceldentifier (#PCDATA) >
pipCode (GlobalProcessIndicatorCode) >
GlobalProcessIndicatorCode (#PCDATA) >
pipInstanceId (Instanceldentifier) >
pipVersion (VersionIdentifier) >
QualityOfServiceSpecification (QualityOfServiceElement+) >

QualityOfServiceElement
QualityOfServiceClassificationCode ,

Value

)

>

(

QualityOfServiceClassificationCode (#PCDATA) >

Value

(

#PCDATA)

>

24

©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Header Structure and Format SDecificatiMm'mw

TREE STRUCTURE FROM MESSAGE GUIDELINE

11 ServiceHeader

2 1 | -- ProcessControl

3 1 | |-- ActivityControl

4 1 | | |-- BusinessActivityIdentifier

5 1 | | |-- MessageControl

6 1 | | | |-- fromRole.GlobalPartnerRoleClassificationCode

7 1 | | | |-- fromService.GlobalBusinessServiceCode

8 0..1 | | | |-- inReplyTo.ActionControl

9 1 | | | | |-- ActionIdentity

101 | | | | | |-- GlobalBusinessActionCode

110..12 | | | | | |-- messageStandard.FreeFormText

120..1 | | | | | |-- standardvVersion.VersionIdentifier

T _ e

134 1 | | | | |-- messageTrackingID.InstancelIdentifier

145 1 | | | |-- Manifest

156 0..n | | | | |-- Attachment

167 0..1 | | | | | |-- description.FreeFormText

17¢ 1 | | | | | |-- GlobalMimeTypeQualifierCode

189 1 | | | | | |-- UniversalResourceldentifier

2619 1 | | | | |-- numberOfAttachments.CountableAmount

20 1 | | | | |-- ServiceContentControl

212 1 | | | | | |-- Choice

223 | | | | | | |-- ActionIdentity

234 1 | | | | | | | |-- GlobalBusinessActionCode

245 0..1 | | | | | | | |-- messageStandard.FreeFormText

25¢ 0..1 | | | | | | | |-- standardversion.VersionIdentifier

271 R Versionldentifier

268 | | | | | | |-- SignalIdentity

279 1 | | | | | | | |-- GlobalBusinessSignalCode

2836 1 | | | | | | | |-- VersionIdentifier

293% 1 | | | |-- toRole.GlobalPartnerRoleClassificationCode

302 1 | | | |-- toService.GlobalBusinessServiceCode

313 1 | |-- GlobalUsageCode

324 0..1 | |-- partnerDefinedPIPPayloadBindingId.Proprietary
Referenceldentifier

335 1 -- pipCode.GlobalProcessIndicatorCode

346 1 -- pipInstancelId.Instanceldentifier

35 1 -- pipVersion.VersionIdentifier

368 0..1 -- QualityOfServiceSpecification

379 1 -- QualityOfServiceElement

3846 1 -- QualityOfServiceClassificationCode

394% 1 -- Value

402341 -- Choice

41335 | | |-- KnownInitiatingPartner

424361 | | | |-- PartnerIdentification

43537 0..1 | | | | |-- domain.FreeFormText

446381 | | | | |-- GlobalBusinessIdentifier

457390..1 | | | | |-- locationID.FreeFormFext—Value

46846 | | |-- UnknownInitiatingPartner

479% 1 | | | |-- PartnerIdentification

485642 0..1 | | | | |-- domain.FreeFormText

495143 1 | | | | |-- GlobalBusinessIdentifier

502440..1 | | | | |-- locationID.FreecFormText—Value

513451 | | | |-- UniformResourceLocator

4o+ partnerDefinedPIPPayloadBindinglid-Propriectaxry
Refereneceldentifier

45 — sielede GlebalirecessCod

481 | |- pipInstenceld.Instanceldentifier

45 — siolersien VersienTdeabifioe

©2001 by RosettaNet. All rights reserved. 25

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

cn n 1 | OuslituNfCSaruyioanCrnanifiaatdan

O——F—T o EYOESSEVE SpeetrEreation
51 1 a1 | 1 Oual it rOfFSeoriziaaf] +
171 Ho T EYOESEer v Erement
co 1 I I OuslituNfSaryuyicaflaaaifigatiancad
Z2—+ . — o EYOESSEVE TS5 reatrontcoa
52 1 I I ol

- I I I I -

ELEMENT DESCRIPTION

Table 3 provides descriptions of the Service Header elements and special validation
and processing rules where applicable. Note that the Element Names have one-to-one
correspondence with the Element Tag Names, but are not exactly the same. The
element names have been formatted for readability and white spaces have been
introduced. (For example, the Element Name “PIP Code” in the table corresponds to
the element with the tag name “PIPCode”.) The official element descriptions appear in
the separately published Message Guideline associated with the Service Header DTD.

Table 3. Service Header Elements

Note: This table is provided to assist in understanding how this header works. For complete documentation on
these elements, consult the Message Guideline itself.

Special Validation and

Element Name Description / Notes Processing Rules
Action Identity (In reply to) The identity of the action to which
this message is in reply.
Action Control Business action message control
properties.
Activity Control Specifies the properties of this
activity.
Attachment Details of the attachment. Not

present if the number of attachments
is zero. The number of entries for
this element MUST be equal to the
value specified in No Of

Attachments.

Business Activity Identifier RosettaNet Activity identifier of this
message.

Countable Amount Dimensionless magnitude, e.g.,
number of products.

Description A description of the attachment.

Free Form Text Unformatted text.

From Role The role that the trading partner
sending this message plays in this
PIP.

From Service The service from which this message

is being sent.

26 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Header Structure and Format Specificationspﬁ@gi‘_ngm

Element Name

Description / Notes

Special Validation and
Processing Rules

Global Business Action Code
(Action Identity)

The Action Code corresponding to
the action to which this message is
in reply.

For the valid value for this element,
refer to the corresponding
“InReplyToActionCode” element in
the PIP Specification corresponding
to the currently executing PIP,
Activity, and Action.

Global Business Action Code
(Service Content)

The Action Code if this is an action.

Global Business Identifier

A unique business identifier. Use of
the DUNS number is required by
RosettaNet.

Global Business Service Code
(From Service and To Service)

The service specified in the PIP.

For the valid value for this element,
refer to the corresponding
“FromService” element (or
“ToService” element, as the case
may be) in the PIP Specification
corresponding to the currently
executing PIP, Activity, and Action.

If the current message is a signal,
then the value corresponding to the
From Service in the signal MUST be
the same as the value of the To
Service in the action to which this
signal is replying.

Global Business Signal Code

(Service-ContentSignal
Identity)

The Signal Code if this is a signal.

Global Mime Type Qualifier
Code

The MIME content type of the
attachment.

This value MUST be picked from
the MIME content type for the
attachment.

Global Partner Role
Classification Code
(From Role and To Role)

The role specified in the PIP.

For the valid value for this element,
refer to the corresponding
“FromRole” element (or “ToRole”
element, as the case may be) in the
PIP Specification corresponding to
the currently executing PIP,
Activity, and Action.

If the current message is a signal,
then the value corresponding to the
From Role in the signal MUST be
the same as the value of the To Role
in the action to which this signal is

replying.

Global Process Indicator Code

Manage Product Subscriptions. This
code MUST be the PIP identifier
(e.g., 3A4).

Business process

©2001 by RosettaNet. All rights reserved.

27

RosettaNet Implementation Framework: Core Specification

Release for Validation 13 July 2001

Element Name

Description / Notes

Special Validation and
Processing Rules

Global Usage Code

Determines whether this message is

The only allowed values are “Test”

to be used in Test mode or in
Production mode.

and “Production”.

In Reply To

The elements that help identify the
message to which this message is in

reply.

MUST be present if this is not the
first message in an activity. MUST
be present for all signals.

Instance Identifier

A unique alphanumeric identifier
that represents a specific instance of
an business process, business
transaction, business action, or
business signal. The instance
identifier must be unique for a
particular instance of a business
process, business transaction,
business action and business signal.

Known Initiating Partner

A known partner initiating this PIP
instance, with whom the responder
has a valid TPA.

Manifest

Provides a list of items in the
payload section (i.e., the Service

Content and the list of attachments if

any).

Message Control

The elements whose values change
with every message in the PIP.

Note that all elements other than
those in this group are set by the
initiator and MUST remain the same
through all messages in that PIP
instance.

Message Tracking ID

Identifies the instance ID of the
action to which this message is in

reply.

Value MUST come from Message
Tracking ID in the Delivery Header
of the original received message.

Message Standard

The standard with which the Service
Content MUST be compliant.

MUST be set if and only if this is a
non-RosettaNet-specified Service
Content message.

Number Of Attachments

The number of attachments.

If no attachments, the only allowed
value is “0” (i.e., the number zero).

Partner-Defined PIP Payload
Binding ID

MUST be specified if and only if a
non-RosettaNet content is to be
shipped in the payload portion of a
RosettaNet Business Message.

Partners agree on this value.

Refer to section 2.1.4.4 for more
details.

Partner Identification (Known

Identifies the trading partner who

or Unknown Initiating Partner)

initiated this process by Global

Business Identifier and optional
Location ID.

PIP Code RosettaNet PIP Code of this The valid value for this element
message. Set by the initiating MUST be obtained from the
partner. “PIPCode” element in the PIP
Specification corresponding to the
currently executing PIP.
28 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Header Structure and Format Specifications

Element Name

Description / Notes

Special Validation and
Processing Rules

PIP Instance ID The ID of this PIP instance. MUST be unique within the context
of the initiating partner.
PIP Version RosettaNet PIP Version of this The valid value for this element

message. Set by the initiator of this
transaction.

MUST be obtained from the
“PIPVersion” element in the PIP
Specification corresponding to the
currently executing PIP.—In-the

Process Control

Group of elements carrying
information about the process within
which this message is being sent.

Proprietary Reference Identifier

A unique reference identifier for
goods, services, or business
documents.

Maximum length of 255.

Quality Of Service Element

Specifies a quality of service
constraint item.

This element is specified for future
backward compatibility.

There are no valid values at this
time. Receiver MUSTignore this
element if set.

©2001 by RosettaNet. All rights reserved.

29

RosettaNet Implementation Framework: Core Specification

Release for Validation 13 July 2001

Element Name

Description / Notes

Special Validation and
Processing Rules

Quality Of Service Specifies quality of service This element is specified for future

Specification constraints for this message instance. backward compatibility.
There are no valid values at this
time. Receiver MUSTignore this
element if set.

Quality Of Service Identifies the quality of service This element is specified for future

Classification Code

measurement category.

backward compatibility.

There are no valid values at this
time. Receiver MUSTignore this
element if set.

Service Content Control

Contains information about the
Service Content.

Signal Identity

The collection of properties that are
used to identify a business signal.

Standard Version

The version of the standard with

MUST be set if and only if this is a

(Action Identity) which the Service Content MUST be non-RosettaNet-specified Service
compliant. Content message.

To Role The role the trading partner
receiving this message plays in this
PIP.

To Service The service to which this message is

being sent.

Uniform Resource Locator
(Unknown Initiating Partner)

Specifies the URL to which replies
MUST go in the case of an unknown
body with whom a TPA MAY not
exist.

If this is the first message in the PIP
instance, MUST be specified if and
only if the Partner Type is
“Unknown” and the message is not
requesting a synchronous response
(see section 2.4).

If Partner Type is “Unknown” and
this value is not specified, further
processing might not be possible.

Universal Resource Identifier
(Attribute of Attachment
Details)

Reference to the content ID of the
attached document.

This value MUST follow the
Content-ID reference syntax per
RFC 2111 and MUST refer to the
MIME Content-ID of the
attachment.

Unknown Initiating Partner

An unknown partner initiating this
PIP instance soliciting some public
information through the RosettaNet
PIP framework.

Value Identifies the quality of service Valid values are defined within the
measurement constraint. context of the Quality of Service
Classification Code.
30 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Header Structure and Format Sgecificationsﬂ@mﬁ

Special Validation and

Element Name Description / Notes Processing Rules

Version Identifier Identifies the version of the business The value for this element MUST be

(Signal Identity) signal that is carried in the Service obtained from the Signal Version
Content. Identifier field of the identified

Business Signal's Message
Guideline. The-valid-value for this

clement MUST be-obtained-fromthe
- -
b - .
| I“l — . ¥

Example 3. Service Header Instance (Using PIP 3A4)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ServiceHeader SYSTEM "ServiceHeader MS BV02 00.dtd">
<ServiceHeaders
<ProcessControls>
<ActivityControls>
<BusinessActivityIdentifier>Create Purchase
Order</BusinessActivityIdentifiers>
<MessageControl>
<fromRole>
<GlobalPartnerRoleClassificationCode>Buyer</GlobalPartner
RoleClassificationCode>
</fromRole>
<fromServices>
<GlobalBusinessServiceCode>Buyer
Service</GlobalBusinessServiceCode>
</fromServices>
<Manifest>
<Attachment>
<descriptions>
<FreeFormText>PDF version of PO</FreeFormTexts>
</description>

<GlobalMimeTypeQualifierCode>PBFapplication/pdf</GlobalMimeType |
QualifierCode>
<UniversalResourceIdentifier>tcid:Attachment.
20001121T123000.000Z@this.example.com’</UniversalResourceldentifiers>
</Attachment>

©2001 by RosettaNet. All rights reserved. 31

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

<numberOfAttachments>
<CountableAmount>1</CountableAmount >
</numberOfAttachments>
<ServiceContentControl>
<ActionIdentitys>
<GlobalBusinessActionCode>Purchase Order Request
Action</GlobalBusinessActionCode>

T e A SR e e
</ActionIdentity>
</ServiceContentControl>
</Manifests>

<toRole>
<GlobalPartnerRoleClassificationCode>Seller</GlobalPartner
RoleClassificationCode>
</toRole>
<toService>
<GlobalBusinessServiceCode>Seller
Service</GlobalBusinessServiceCode>
</toServices>
</MessageControl >
</ActivityControls>
<GlobalUsageCode>Production</GlobalUsageCode>
— <KnownlnitiatingPartner>

FreelormText>DUONS</FreelFormText
e
B e
— </PartnerIdentifications>
KnewnInittiatingPartner
<pipCode>
<GlobalProcessIndicatorCode>3A4</GlobalProcessIndicatorCode>
</pipCode>
<pipInstanceIds>
<InstancelIdentifier>121212</InstancelIdentifiers>
</pipInstanceIds>
<pipVersion>
<VersionIdentifier>81.82</VersionIdentifiers>
</pipVersions>

<KnownInitiatingPartner>
<PartnerIdentification>
<domain>
<FreeFormText>DUNS</FreeFormText>
</domain>
<GlobalBusinessIdentifier>123456789</GlobalBusinessIdentifiers>
</PartnerIdentifications>
</KnownInitiatingPartner>
</ProcessControls>
</ServiceHeaders>

VERSIONING NOTES

RNIF 2.0 invalidates the 1.1 version of the Service Header. The new version to use is
version 2.0 of the Service Header, which follows the Service Header DTD structure.

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

32 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Payload Components

A message that is compliant with RNIF 2.0 MUST have an XML document called
Service Header. This document MUST have been packaged according to the
packaging rules specified in section 2.3. The document MUST conform to the DTD
defined above and MUST have values in conformance to the applicable Element
Description table.

2.1.4 Payload Components

The payload part of the RosettaNet Business Message comprises the Service Content
(which is either an action message or a signal message) and zero or more OPTIONAL
attachments.

The payload is the actual business content that the Service Header describes or
identifies. The Service Header format is fixed and independent of payload. The
Service Content part of the payload (i.e., the action message or signal message)
changes based on the specific business content being exchanged, which depends on
the PIP type and instance. The attachments are also dynamic per instance of the
business message as should be expected.

VERSIONING NOTES

“Payload” as a concept is new to RNIF 2.0, as are attachments. The RosettaNet
Service Content is the same as in RNIF 1.1, except that in RNIF 2.0 it can contain
non-RosettaNet content.

2.1.4.1 Service Content

The Service Content part of the payload contains business content that is in XML
format. The Service Content is always either an action message or a signal message.
The DTDs for all signal messages are specified by RosettaNet. The DTDs for PIP
action messages MAY be specified by RosettaNet or by other standards bodies that
have been sanctioned by RosettaNet.

PIPs must identify which are the allowed standards body(ies) that can supply content
in the given PIP.

2.1.4.2 Handling Attachments

Payloads containing action messages could contain attachments. These attachments
are typically supporting documents that accompany the business documents.
Attachments need not be XML documents; some examples of attachments include:
Word documents, GIF images, PDF files, TIF images, etc. Each attachment
constitutes a separate MIME body part in the RosettaNet Business Message and
MUST have the MIME Content-ID attribute specified (see section 2.3 for details). The
Content-ID value for the attachment is also listed in the Service Header’s Manifest
element.

©2001 by RosettaNet. All rights reserved. 33

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

2.1.4.3 Referring to Attachments from within Service Content

As mentioned above, attachments to Service Content are sent as separate MIME body
parts in the same RosettaNet Business Message. This method packages and ships the
business content and attachments together. However, RosettaNet recognizes that it
sometimes would be necessary to refer to attachments from within the Service
Content. Since action messages (specified by RosettaNet or otherwise) are defined
independently of the RosettaNet Implementation Framework, RNIF 2.0 defines a
standard mechanism to refer to attachments from within XML Service Content
documents and leaves it up to the Service Content DTD developers to make use of this
mechanism.

Each attachment MUST be identified by the MIME header “Content-ID” in the
RosettaNet Business Message. All XML elements that could refer to attachments
MUST have the attribute “href” defined as one of the attributes for the XML element.

For example:
<!ELEMENT AnyElement (#PCDATA) >
<!ATTLIST AnyElement

$miscAttributes;
href CDATA #implied) >

An instance of the element “AnyElement” could then refer to the attachment as
follows:

<AnyElement href="cid:<cid-of-attachment>"> ...
</AnyElement >

where <cid-of-attachment> is the value of Content-ID MIME header for the
attachment.

For example, if the MIME part packaging of an attachment in a RosettaNet message
occurs as follows:

--RN-Outer-Boundary—

Content-Type: image/gif
Content-Transfer-Encoding: Baseé64

Content-ID: <001807928llxyz@xyz.rosettanet.org>
[Attachment data goes here]

--RN-Outer-Boundary—

then an instance of the element “AnyElement” could refer to the attachment as
follows:

<AnyElement href="cid:00180792811xyz@xyz.rosettanet.org”>
</AnyElement >

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

The MIME Content-ID attribute MUST be specified for all attachments.

34

©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Payload Components

The format cid:<value> MUST be used for the value of the href attribute.

Multiple elements MAY refer to the same attachment.

2.1.4.4 Shipping Non-RosettaNet Service Content in the Payload

A RosettaNet PIP definition, among such other things as activity names, actions,
timeouts, and retry definitions, includes document type definitions and message
guidelines for all the action messages in the PIP. Some Supply Chain Partners have
expressed the need to use Document Type Definitions from other standards within a
RosettaNet PIP. As a result, RNIF 2.0 specifies a mechanism to enable
implementations to exchange non-RosettaNet Service Content within a RosettaNet
Business Message.

Note, however, that these Document Type Definitions and versions MUST be
sanctioned by RosettaNet (on a per-PIP basis). When such service content is allowed
as an alternative to RosettaNet-provided Service Content, then trading partners need to
decide in advance whether to use it.

If two trading partners decide to use non-RosettaNet Service Content, they MUST
NOT alter anything in the PIP specification itself. They can only agree upon what
Document Types Definitions and versions to use for all the action messages in the
PIP. For instance, assume that Trading Partner X and Trading Partner Y decide to use
the business message structures defined by the ABC standard for the High Tech
Manufacturing industry, where ABC is a message exchange standard and does not
deal with business process definitions. In such a case, the two trading partners need to
agree on a common “ID” to bind this payload structure with the PIP version they
execute. They MUST agree among themselves as to which RosettaNet-sanctioned
message type and version MUST be used for the request and which message type and
version MUST be used for the response. Let us assume that they choose to use ABC
standard’s DTD structures in order to execute the Purchase Order Management PIP
and specifically, the PO version 1 for the request and a PO Acceptance version 1 for
the response. They will then need to identify this “flavor” of their PIP with a unique
identity, say “XY”. This value “XY” will be used in the Partner-Defined PIP Payload
Binding ID element in the Service Header.

The Partner-Defined PIP Payload Binding ID MUST be unique per the set of Trading
Partners using it (therefore Message Standard and Standard Version can be inferred
from it). This element MUST be set if and-only-ifthe PIP is executed in such a
scenario. This element MUST NOT be set if the PIP is compliant with the regular
RosettaNet PIP. Note that the combination of a PIP Code, PIP Version and Partner-
Defined PIP Pavload Binding ID identifies a unique set of Service Content types
within the partners' systems

RosettaNet is not responsible for the maintenance of these non-RosettaNet DTDs.

©2001 by RosettaNet. All rights reserved. 35

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

2.2 Security Provisions and
Trading Partner Authentication

This section specifies how S/MIME is used within RosettaNet for securing messages.
It also establishes the norms RECOMMENDED by RosettaNet for use of digital
signatures.

2.2.1 Use of S/MIME within RosettaNet

The use of S/MIME (Secure/Multipurpose Internet Mail Extensions) in RosettaNet is
governed by IETF RFC 2311 “S/MIME Version 2 Message Specification” which
describes the S/MIME v.2 format. RNIF 2.0 makes use of the enveloped and signed
data types defined in the S/MIME specification.

S/MIME provides one format for enveloped-only data and several formats for signed-
only data. RNIF 2.0 utilizes the enveloped and the multipart signed S/MIME formats.
(See examples below for use of actual headers.)

A single procedure is used for creating MIME entities that are to be signed or
enveloped. Some additional steps are RECOMMENDED to defend against known
corruption that can occur during mail transport and that are of particular importance
for clear-signing using the multipart/signed format. The rules for creating MIME
entities for signing and enveloping are outlined in RFC 2311 and are defined in RFC
2045 —2049.

According to S/MIME guidelines each MIME entity MUST be converted to a
canonical form that can be uniquely and unambiguously represented in the
environment where the signature is created and in the environment where the
signature is verified. MIME entities MUST be presented in a canonical format for
enveloping as well as signing. The S/MIME specification also recommends that
entities such as 8-bit text and binary data be encoded with quoted-printable or base-64
transfer encoding. For this reason, all recipients MUST be able to read both quoted-
printable and base-64 encoded messages.

The application/pkcs7-mime defined by S/MIME type carries PKCS #7 objects of
several types, including envelopedData and signedData. The PKCS #7 object MUST
always be BER encoding of the ASN.1 syntax describing the object. According to the
S/MIME guidelines the contentInfo field of the carried PKCS #7 object MUST never
be empty. Since PKCS #7 objects are binary data, in most cases base-64 or quoted
printable transfer encoding is appropriate, in particular when used with SMTP
transport. The transfer encoding used depends on the transport through which the
object is to be sent, and is not a characteristic of the MIME type.

RNIF 2.0 uses S/MIME enveloped messages to secure parts efthe-of the RosettaNet
business messages. The S/MIME specification recommends the following three-step
process for creating enveloped messages:

1. The MIME entity is prepared for enveloping.

36

©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Use of S/MIME within RosettaNet i

2. The MIME entity and other required data are processed into a PKCS #7 object of
type envelopedData. The PKCS #7 object is inserted into an application/pkcs7-
mime MIME entity.

3. Appropriate transfer encoding is applied to the parts of the MIME entity.

The smime-type parameter for enveloped-only messages is "enveloped-data". The file
extension for this type of message is ".p7m".

Example 4. S/MIME Enveloped Message

Content-Type: application/pkcs7-mime;
smime-type=enveloped-data;
name=smime.p7m
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhThjH7 7n8HHGTIHG4VQpEyF467GhIGEHEYT6
7n8HHGghyHhHUujhJh4VQpfyF46 7GhIGEHEYGTrfvbniT6jH7756tbBIH
f8HHGTrfvhJhjH776tbBIHG4VQbnj 756 7GhIGEHE YT6ghyHhHUupfyF4
0GhIGEHEQbN]756YT64V

RNIF 2.0 utilizes the multipart/signed form of the signed messages specified by the
S/MIME specification. The S/MIME specification provides the following five-step
process for creating multipart/signed messages:

1. The MIME entity is prepared for signing.

2. The MIME entity is presented to PKCS #7 processing in order to obtain an object
of type signedData with an empty contentInfo field.

3. The MIME entity is inserted into the first part of a multipart/signed message.

4. Transfer encoding is applied to the detached signature obtained in step 2 and it is
inserted into a MIME entity of type application/pkcs7-signature.

5. The MIME entity of the application/pkcs7-signature is inserted into the second
part of the multipart/signed entity.

The multipart/signed Content type has two required parameters: the protocol
parameter and the micalg parameter. For this MIME part the protocol parameter is
"application/pkcs7-signature". The value of the micalg parameter is dependent on the
message digest algorithm used in the calculation of the Message Integrity Check.

Example 5. S/MIME multipart/signed Message

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg=shal; boundary=boundary42

--boundary42
Content-Type: text/plain

This is a clear-signed message.

--boundary42
Content-Type: application/pkcs7-signature; name=smime.p7s

©2001 by RosettaNet. All rights reserved. 37

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

Content-Transfer-Encoding: baseé64
Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH7 7n8HHGTrfvbnj 756 tbBOHG4AVQpfyF46 7GhIGEHEYT6
4VQpfyF467GhIGEHEYT6jH7 7n8HHGghyHhHUUjhJh756 tbBOHGTrfvbnj
n8HHGTrfvhJIhjH776tbB9HG4VQbnj 756 7GhIGEHEYT6ghyHhHUujpfyF4
7GhIGEHEYT64VQbnj756

--boundary42--

2.2.2 Use of Digital Certificates within RosettaNet

RNIF 2.0 RECOMMENDS the use of digital certificates. Digital certificates are
delivered as a part of the application/pkcs7-signature part of the multipart-signed
RosettaNet message. RosettaNet uses RFC 2312 “S/MIME Version 2 Certificate
Handling” as a guideline for use of digital certificates in RosettaNet messages. Due to
the complexity of the certification process and overall immaturity of the existing PKI
deployments, RosettaNet is much more tolerant in respect of the content of the
certificates. This section establishes the norms RECOMMENDED by RosettaNet. The
exact implementation of the certificate handling procedures and authentication
semantics of the information in the digital certificate received with a RosettaNet
message is left to the Trading Partner Agreement.

According to the S/MIME certificate handling specification, receiving agents MUST
support X.509 vl and X.509 v3 certificates. The specification also requires that end-
entity certificates include an Internet mail address for the sender. Since RNIF 2.0 is
defined in a transport-independent fashion, the Internet email address of the sender in
the end-entity certificates MAY be omitted.

RNIF 2.0 aligns with the S/MIME certificate handling specification in that receiving
agents MUST be able to handle an arbitrary number of certificates of arbitrary
relationship to the message sender and to each other in arbitrary order. RNIF 2.0 also
aligns with the S/MIME specification in the use of a single or a dual key pair for data
signing and encryption: the choice of the number of the key pairs is left for the
Trading Partner Agreement.

RNIF 2.0 requires that the sender MUST include any certificates that contain the
signer's public key(s). The sender MAY include the associated issuer certificates. This
measure allows establishing a simple and efficient way of associating the message
sender with a particular Trading Partner profile.

RNIF 2.0 leaves it to the Trading Partner Agreement to determine the format of the
certificate chains leading to the self-signed root Certificate Authority (CA)
certificates. The recipient SHOULD be able to support the types of certificate chains
(complete and incomplete) described in the S/MIME certificate handling specification
and directly trusted certificates (empty certificate chain). All trust decisions are left to
the Trading Partner Agreement. In full conformance with the S/MIME certificate
handling specification, RosettaNet message recipients MUST support certificate
chaining based on the distinguished name fields in the certificates. RNIF 2.0
REQUIRES verification of the signer’s certificate validity.

The X.509 v3 standard describes an extensible framework in which the basic
certificate information can be extended and how such extensions can be used to

38

©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Use of Digital Certificates within RosettaNet i

control the process of issuing and validating certificates. At present, there is no single,
coherent view regarding which certificate extensions must be present in the X.509 v.3
digital certificates. RNIF 2.0 leaves the use of the particular X.509 v.3 certificate
extensions to the Trading Partner Agreement. RNIF 2.0 also lessens the requirements
of the S/MIME certificate handling specification and does not require the recipients to
handle the subset of the certificate extensions listed in RFC 2312. RNIF 2.0
REQUIRES the recipient to abandon verification of messages that contain certificates
with critical extensions that the recipient is unable to handle. It is RECOMMENDED
that the UNP.MESG.SIGNERR event SHOULD be handled according to internal
policies.

RNIF 2.0 RECOMMENDS but does not require the recipient to implement a
certificate-revocation list (CRL) retrieval mechanism in order to gain access to
certificate revocation information when validating certificate chains. RNIF 2.0
RECOMMENDS but does not require the recipient to retrieve and utilize CRL
information every time a certificate is verified as part of a certificate chain validation,
even if the certificate was already verified in the past. RNIF 2.0 does not specify
which technique is used to validate certificates (e.g., via CRL, using the OCSP
protocol, etc.). All certificate validation procedures are executed according to local
security policy. RNIF 2.0 RECOMMENDS that the use of CRL information MAY be
dictated by the value of the information that is protected.

2.3 RosettaNet Business Message Packaging
and Unpackaging

This section specifies how the sender of the message assembles the defined message
components and how the recipient extracts those components. It includes details on
packaging and unpackaging RosettaNet Business Messages that have been encrypted
and/or signed, as well as “plain” messages.

A RosettaNet Business Message is a combination of the individual business message
components packaged into a MIME message, with appropriate MIME headers. Signed
and enveloped content types per the S/MIME specification are used to provide
authentication, message integrity, privacy, data security, and non-repudiation of
origin. (See RFC 2311 for details.) Non-repudiation of receipt is achieved by signed
Receipt Acknowledgments, which contain the digest of the received message.

RosettaNet Business Message packaging involves packaging the various business
message components described in section 2.1 into MIME and/or S/MIME entities.
Unpackaging involves extracting individual RosettaNet Business Message
components from the MIME entities.

All packaging and unpackaging specifications within this section are independent of

the transfer protocol used. However, some transfer protocols might not be able to
handle binary or 8-bit data. Where one of these transfer protocols is used, content
transfer encoding such as base-64 MUST be used to transform the binary and 8-bit

data te-into 7-bit encoding. Transfer protocol-specific bindings and transfer protocol |
headers are treated in the “RosettaNet Business Message Transfer” section.

The RosettaNet packaging specification follows standard MIME conventions, unless
otherwise stated.

©2001 by RosettaNet. All rights reserved. 39

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

Note: Per standard MIME convention, MIME header names and values and parameter
names and-values-are not case sensitive, while parameter values are normally case
sensitive. The order of MIME headers in a part and the order of parameters in a header
(if more than one is present) are also not significant. Additionally, values for MIME
boundaries shown in the examples are just examples and SHOULD NOT be used as
the actual values.

2.3.1 Definitions of Terms

This subsection describes the terms used throughout this section to refer to certain
logical groups of the business message components. Note that these definitions are
only logical because they do not include the extra entities included by MIME
packaging such as the MIME headers themselves and the MIME boundaries.

These definitions use Backus Naur Form (BNF) for description.

Service Content: comprises an action message or a signal message.
Grammar Rule: Service-Content := Action-Message | Signal-Message

Attachments: Documents or files that are not part of the Service Content but need to
be packaged and sent as a part of the RosettaNet Business Message.
Grammar Rule: Attachments := *Attachment

Payload: This refers to a logical group containing the Service Content and the
Attachments (if any).
Grammar Rule: Payload := Service-Content Attachments

Payload Container: This term refers to a logical group containing the Payload and
the Service Header.
Grammar Rule: Payload-Container := Service-Header Payload

RosettaNet Business Message: This term refers to a logical grouping of the Payload
Container, the Delivery Header, and the Preamble. Note: A RosettaNet Business
Message is sometimes referred to as “Business Message™ for convenience.

Grammar Rule: RosettaNet-Business-Message := Preamble Delivery-Header
Payload-Container

2.3.2 Using Intermediaries

Care has been taken to ensure that the use of an intermediary by a partner is kept as
“transparent” as possible to the other partner. The idea is to enable transmitting
messages through intermediaries without having to alter the message structure or
perform heavy processing.

Hence, the packaging or unpackaging rules to be followed when an intermediary is
involved are no different from those followed when the intermediary is not involved.

2.3.3 Packaging the RosettaNet Business Message

The RosettaNet Business message consists of the following components:

40

©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Packaging the RosettaNet Business Message

1. Preamble

2. Delivery Header

3. Service Header

4. Service Content

5. Attachments (if any)

Packaging involves encapsulating these various components using the MIME
specification and optionally encrypting and/or signing the appropriate portions.

NOTES ON SIGNING AND ENCRYPTING

The decision on whether to encrypt depends on the agreement between the trading
partners involved, and other factors such as the sensitivity of the actual service content
and attachments. In order to provide flexibility, RNIF 2.0 allows encryption of either
the entire Payload Container or just the Service Content. The choice depends on what
the two trading partners agree upon, which may ultimately depend upon whether an
intermediary needs access to the Service Header and/or the sensitivity of the data in
the Service Header.

In order to make implementations simple, RNIF 2.0 only allows signing of the
RosettaNet Business Message as a whole. In other words, RNIF 2.0 does not allow
signing of individual or selective parts of the RosettaNet Business Message.

To protect sensitive information contained within a RosettaNet Exception Business
Signal, if the message to which it is a response was encrypted and/or signed, the an
Exception Business Message MUST likewise be encrypted and/or signed-in-the-same

PACKAGING NON-ROSETTANET CONTENT

As described earlier in section 2.1, action messages could be in a format defined by
RosettaNet or any other standards body that is permitted by RosettaNet. The XML
Service Header elements MUST clearly identify the nature of the Service Content.
Refer to the description of Service Header for complete details.

GENERAL PACKAGING RULES

In encapsulating the components into a MIME entity, all body parts carrying only
XML data MUST use the content type of application/xml and MAY be content-
transfer-encoded (see RFC 2376). Also, all body parts MUST contain a Content-ID
header. RNIF 2.0 REQUIRES this header for all MIME parts even though this header
is optional according to the MIME specification (see RFC 2045). Additionally the
Content-Location header defined in RFC 2557 MUST be used to label Preamble,
Service Header, and Service Content parts. Use of this header to tag these parts allows
the receiving entity to identify and perform any special handling of these elements.
The values that MUST be used for the Content-Location header for the respective
parts are specified in Table 4.

©2001 by RosettaNet. All rights reserved. 41

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

Table 4. Content Location Values

Body Part Carrying Content-Location Value (case insensitive)
Preamble RN-Preamble

Delivery Header RN-Delivery-Header

Service Header RN-Service-Header

Service Content RN-Service-Content

The packaging specification uses the multipart/related MIME structure (see RFC
2387) to package plain components of the message. It also uses the S/MIME types
multipart/signed and "application/pkcs7-mime" type with "smime-type=enveloped-
data" for signing and enveloping content, respectively.

For the multipart/related content-type, the “type” parameter is mandatory and MUST
be specified with a value corresponding to the “root” part of the multipart/related
message (see below for more details). The “start” parameter is OPTIONAL and if
present MUST contain the Content-ID value corresponding to the root part that is
identified in the “type” parameter.

NOTES ON CONTENT TRANSFER ENCODING

When deciding on a particular content-transfer-encoding to apply to a MIME entity
(multipart section), consideration SHOULD be given to the characteristics of the data
content of that entity, as well as of the transfer mechanism over which the message
will be carried. In general, if it is known for certain (through an agreement between
the trading partners) that the entire communication path allows binary data to be
carried, then it is most efficient to use binary encoding (no transformation) for all
MIME multipart entities. If this assumption cannot be made (for example, if the
delivery mechanism is determined after packaging, or if an intermediary may route the
message using unknown protocols), then all MIME entities that are not already
compliant with 7bit encoding MUST be transformed by applying either quoted-
printable or base64 transfer encoding. Refer to RFC 2045 for further details about the
Content-Transfer-Encoding MIME header.

PACKAGING STEPS

This section describes the steps necessary to package the RosettaNet Business
Message. These steps are descriptive rather than prescriptive. The implementer MAY
use any procedure or sequence to package a message as long as the result is the same.

The Service Content and the Attachments, if any, are created as per the PIP
specification.

The Service Header is created using information about the PIP being executed, the
Service Content, and the Attachments, if any.

The Delivery Header is created using such information as the sender identification, the
receiver identification, and a gleballyunique-message tracking ID.

The Preamble is created as per the Preamble specification.

42

©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Packaging the RosettaNet Business Message

Once these components are created, packaging of the RosettaNet Business Message
commences. The selection and flow of packaging steps varies depending upon
whether the RosettaNet Business Message is to be encrypted or not, and upon whether
it is to be signed or not. If the message is not to be encrypted, the steps in “Packaging
without Encryption” MUST be performed. If the message is to be encrypted, the steps
in “Packaging with Encryption” MUST be performed. Finally, if the message is to be
signed, the steps in “Signing the Package” MUST be performed.

PACKAGING WITHOUT ENCRYPTION

If encryption is not required, the Preamble, the Delivery Header, the Service Header,
the Service Content and the attachments (if any) are packaged into a multipart/related
message (see RFC 2387). Although the Content-ID header is optional in MIME,
RosettaNet requires that each of the body parts of the multipart/related message
contains the Content-ID header as previously described. Note that the values in the
Content-ID header MUST be globally unique (see RFC 2045). Additionally, the
Preamble, the Delivery Header, Service-Header, and Service-Content MUST also
have the Content-Location header with the respective values “RN-Preamble”, “RN-
Delivery-Header”, “RN-Service-Header”, and “RN-Service-Content”.

In creating this multipart message, the Preamble MUST be the first body part, the
Delivery Header the second body part, the Service Header third, and the Service
Content the fourth body part. Attachments (if any) appear from the fifth body part
onwards. There is no specific order in which these attachments are arranged; however,
the order in which the attachments are listed in the manifest part of the Service Header
MAY be followed for convenience.

The mandatory “type” parameter of the multipart/related content-type header MUST
have the value “application/xml”, corresponding to the Preamble (which happens to be
the root or first part). The OPTIONAL “start” parameter, if present, MUST contain
the Content-ID value of the Preamble.

This constitutes the entire (unencrypted) RosettaNet Business Message without a
signature.

©2001 by RosettaNet. All rights reserved. 43

RosettaNet Implementation Framework: Core Specification

Release for Validation 13 July 2001

Preamble

Delivery Header

Service Header

Service Content

Multipart/related

Preamble

Delivery Header

Service Header

Service Content

Figure 8. Packaging RosettaNet Business Message without Encryption

Example 6. Packaged RosettaNet Business Message without Encryption

Content-Type: multipart/related; boundary="RN-Outer-Boundary”;
type="application/xml”
Content-Description: This is the RosettaNet Business Message

--RN-Outer-Boundary

Content-Type: Application/XML
Content-Location: “*RN-PreambleXZ
Content-ID: <content-ID-for-Preamble>

[Preamble goes here]

--RN-Outer-Boundary

Content-Type: Application/XML
Content-Location: 2*RN-Delivery-HeaderZ
Content-ID: <content-ID-for-Delivery-Headers>

[Delivery Header goes here]

--RN-Outer-Boundary

Content-Type: Application/XML
Content-Location: “*RN-Service-HeaderZ
Content-Description: RosettaNet-Service-Header
Content-ID: <content-ID-for-Service-Header>

[Service Header goes here]

--RN-Outer-Boundary

Content-Type: Application/XML
Content-Description: RosettaNet-Service-Content
Content-Location: “*RN-Service-ContentXZ
Content-ID: <content-ID-for-Service-Contents>

[Service Content goes here]

--RN-Outer-Boundary

Content-Type: Image/jpeg

Content-Description: A Diagram of the product
Content-ID: diag-123-16776789.ghfg.efg-xcabc.071400

44 ©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Packaging the RosettaNet Business Message

[Attachment 1 goes here]

--RN-Outer-Boundary
Content-Type: Image/tiff
Content-ID: diag-123456789.ghfg.efg-xcabc.08233

[Attachment 2 goes here]

--RN-Outer-Boundary--

PACKAGING WITH ENCRYPTION

The Service Header MAY either be encrypted along with the Service Content and
Attachments or be left unencrypted while the Service Content and the Attachments (if
any) alone are encrypted. Depending on which of these two options is used, the rules
under “Encrypting the Entire Payload Container” or “Encrypting the Payload” are
used respectively.

ENCRYPTING THE ENTIRE PAYLOAD CONTAINER

If encryption of the Service Header is required, the Service Header, the Service
Content and the Attachments (if any) are packaged into a MIME multipart/related
message (see RFC 2387). (This is the Payload Container.) Although the Content-ID
header is optional in MIME, RosettaNet REQUIRES that each of the body parts of the
multipart/related message contains the Content-ID header (see RFC 2045). Note that
the values of the Content-ID header MUST be globally unique (see RFC 2045).
Additionally, the Service Header and Service Content MUST also each have the
Content-Location header with the values “RN-Service-Header” and “RN-Service-
Content”, respectively.

In creating this multipart/related message, the Service Header MUST be the first body
part and the Service Content the second. Attachments (if any) appear from the third
body part onwards. There is no specific order in which these attachments are arranged,;
however, the order in which the attachments are listed in the manifest part of the
Service Header MAY be followed for convenience.

The mandatory “type” parameter of the multipart/related content-type header MUST
have the value “application/xml”, corresponding to the Service Header (which
happens to be the root or first part). The OPTIONAL “start” parameter, if present,
MUST contain the Content-ID value of the Service Header.

©2001 by RosettaNet. All rights reserved. 45

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

— Multipart/related —_

Service Header Service Header

Service Content Service Content

Figure 9. Packaging Payload Container Prior to Encryption

Example 7. Packaged Payload Container Prior to Encryption

Content-Type: multipart/related;
boundary="RN-PayCnt -Boundary” ;
type="application/XML" ;
start="<content-ID-for-Service-Header>"
Content-Description: This is the payload container

--RN-PayCnt-Boundary

Content-Type: application/XML
Content-Description: RosettaNet-Service-Header
Content-Location: 2RN-Service-HeaderZ
Content-ID: <content-ID-for-Service-Headers>

[Service Header goes here]

--RN-PayCnt-Boundary

Content-Type: application/XML;
Content-Description: RosettaNet-Service-Content
Content-Location: *RN-Service-ContentZ
Content-ID: <content-ID-for-Service-Contents>

[Service Content goes here]

--RN-PayCnt-Boundary

Content-Type: Image/jpeg;

Content-Description: A Diagram of the product
Content-ID: diag-987654321.ghfg.efg-xcabc.00112233

[Attachment goes here]

--RN-PayCnt-Boundary--

The resulting multipart/related message is enveloped to create an S/MIME enveloped
message using the "application/pkcs7-mime" content-type with "smime-
type=enveloped-data" (see RFC 2311). RNIF 2.0 does not require any particular
cipher strength or algorithm for data protection or encryption. These settings are
retrieved from the Trading Partner Database as part of the Trading Partner Agreement
and are ultimately determined by corporate policy, import and export restrictions, etc.
(See RFC 2311 and also section 2.2.1 of this specification for complete details.)

46

©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Packaging the RosettaNet Business Message

— S/MIME Envelope —

— Multipart/related —_ — Multipart/related —_
Service Header Service Header
Service Content Service Content
| 1 ' |]

Figure 10. Encrypting the Payload Container

Example 8. Encrypted Payload Container

Content-Type: application/pkcs7-mime;
smime-type=enveloped-data;
name=something.p7m

Content-Transfer-Encoding: baseé64

Content-Disposition: attachment; filename=something.p7m

[The Baseé64-encoded PKCS #7 object goes here]

In Example 8, the base64-encoded PKCS #7 object is the payload container packaged
as a multipart/related message that was shown in Example 7. See RFC 2311 for details
on how to create this object.

The Preamble, the Delivery Header, and the S/MIME enveloped message are then
packaged into a multipart/related message with the Preamble as the first body part, the
Delivery Header as the second, and the S/MIME entity as the third. The mandatory
“type” parameter of the multipart/related content-type header MUST have the value
“application/xml”, corresponding to the Preamble (which happens to be the root or
first part). The OPTIONAL “start” parameter, if present, MUST contain the Content-
ID value of the Preamble.

The result of this packaging constitutes the entire encrypted RosettaNet Business
Message without a signature in the case of the encrypted payload container.

©2001 by RosettaNet. All rights reserved. 47

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

— Multipart/related —_

Preamble Preamble
Delivery Header > Delivery Header
Encrypted Encrypted
Payload Container Payload Container

Figure 11. Packaging RosettaNet Message with Encrypted Payload
Container

ENCRYPTING THE PAYLOAD

If the Service Header is required to be left unencrypted, the Service Content and the
Attachments, if any, are packaged into a MIME multipart/related message (see RFC
2387). Although the Content-ID header is optional in MIME, RosettaNet REQUIRES
that each of the body parts of the multipart/related message contain the Content-ID
header (see RFC 2045). Note that the values of the Content-ID header MUST be
globally unique (see RFC 2045). Additionally, the Service Header and Service
Content MUST also each have the Content-Location header with the values “RN-
Service-Header” and “RN-Service-Content”, respectively.

In creating this multipart/related message, the Service Content MUST be the first body
part and the Attachments, if any, MUST appear from the second body part onwards.
There is no specific order in which these attachments are arranged; however, the order
in which the attachments are listed in the manifest part of the Service Header MAY be
followed for convenience.

The mandatory “type” parameter of the multipart/related content-type header MUST
have the value “application/xml”, corresponding to the Service Header (which
happens to be the root or first part). The OPTIONAL “start” parameter, if present,
MUST contain the Content-ID value of the Service Content.

48 ©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Packaging the RosettaNet Business Message

— Multipart/related —

Service Content Service Content

Figure 12. Packaging Payload Prior to Encryption

Example 9. Packaged Payload Prior to Encryption

Content-Type: multipart/related;
boundary="RN-PayCnt-Boundary” ;
type="application/XML" ;
start="<content-ID-for-Service-Content>"

Content-Description: This is the payload

--RN-PayCnt-Boundary

Content-Type: application/XML;
Content-Description: RosettaNet-Service-Content
Content-Location: *RN-Service-ContentZ
Content-ID: <content-ID-for-Service-Contents>

[Service Content goes here]

--RN-PayCnt-Boundary

Content-Type: Image/jpeg;

Content-Description: A Diagram of the product
Content-ID: diag-987654321.ghfg.efg-xcabc.00112233

[Attachment goes here]

--RN-PayCnt-Boundary--

The resulting multipart/related message is enveloped to create an S/MIME enveloped
message using the "application/pkcs7-mime" content-type with "smime-
type=enveloped-data" (see RFC 2311). RNIF 2.0 does not require any particular
cipher strength or algorithm for data protection or encryption. These settings are
retrieved from the Trading Partner Database as part of the Trading Partner Agreement
and are ultimately determined by corporate policy, import and export restrictions, etc.

©2001 by RosettaNet. All rights reserved. 49

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

—— S/MIME Envelope —]
— Multipart/related — — Multipart/related —
Service Content Service Content
_>
| D 1 | B 1
' Attachment 1 ' ' Attachment 1 '
1 1 1 1
| I 1 | I 1
H Attachment n ' ' Attachment n '
1 1 1 1

Figure 13. Encrypting the Payload

Example 10. Encrypted Payload

Content-Type: application/pkcs7-mime;
smime-type=enveloped-data;
name=something.p7m

Content-Transfer-Encoding: baseé64

Content-Disposition: attachment; filename=something.p7m

[The Baseé64-encoded PKCS #7 object goes here]

In Example 10, the base64-encoded PKCS #7 object is the payload packaged as a
multipart/related message (as shown in Example 9). See RFC 2311 for details on how
to create this object.

The Preamble, the Delivery Header, the Service Header, and the S/MIME enveloped
message are then packaged into a multipart/related message with the Preamble as the
first body part, the Delivery Header as the second, the Service Header as the third, and
the S/MIME entity as the fourth. The mandatory “type” parameter of the
multipart/related content-type header MUST have the value “application/XML”,
corresponding to the Preamble (which happens to be the root or first part). The
OPTIONAL “start” parameter, if present, MUST contain the Content-ID value of the
Preamble.

The result of this packaging constitutes the entire encrypted RosettaNet Business
Message without a signature in the case of the encrypted payload.

50 ©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Packaging the RosettaNet Business Messageﬁ{mm <

— Multipart/related —_

Preamble Preamble

Delivery Header > Delivery Header

Service Header Service Header

Encrypted Payload Encrypted Payload

Figure 14. Packaging RosettaNet Message with Encrypted Payload

SIGNING THE ROSETTANET BUSINESS MESSAGE

If signature is required, the RosettaNet Business Message, whether encrypted or not,
is signed following S/MIME conventions as specified in the “General Packaging
Rules” section above. Specifically, the multipart/signed content type MUST be used
for this purpose.

— Multipart/signed —

— Multipart/related —_— — Multipart/related —

Preamble

Delivery Header

Service Header

Preamble

Delivery Header

Service Header

Service Content Service Content

Digital Signature

Figure 15. Signing the Unencrypted RosettaNet Business Message

©2001 by RosettaNet. All rights reserved. 51

RosettaNet Implementation Framework: Core Specification

Release for Validation 13 July 2001

Multipart/related

Multipart/signed

Multipart/related

Preamble

Preamble

Delivery Header

Delivery Header

Service Header

Service Header

Encrypted Payload

Encrypted Payload

Digital Signature

Figure 16. Signing the Encrypted RosettaNet Business Message
(Payload Encrypted)

— Multipart/signed e

— Multipart/related e — Multipart/related —
Preamble Preamble
Delivery Header —> Delivery Header

Encrypted Encrypted
Payload Container Payload Container

Digital Signature

Figure 17. Signing the Encrypted RosettaNet Business Message
(Payload Container Encrypted)

Example 11. Signed RosettaNet Business Message

Content-Type: multipart/signed;
boundary="RN-Signature-Boundary” ;
protocol="application/pkcs7-signature”;
micalg=shal

Content-Description: This is a Signed RosettaNet Business Message

--RN-Signature-Boundary

52

©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Packaging the RosettaNet Business Message i <

[The RosettaNet Business Message to be signed goes here]

--RN-Signature-Boundary

Content-Type: Application/pkcs7-signature; name="detached.p7s”
Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s
Content-Description: This is the signature for the Business Message

[The baseé64-encoded PKCS7 Detached Signature goes here]

--RN-Signature-Boundary--

REQUESTING SYNCHRONOUS RESPONSE

Note that above packaged message can now be transmitted via any transfer protocol.
A detailed discussion on the transfer protocol specifics can be found in section 2.4. If
the response for the message being so sent is required to be received synchronously,
then the message MUST be sent via HTTP. In such a case, the HTTP entity header “x-
RN-Response-Type” that indicates that the response be received synchronously
MUST be specified. Refer to section 2.4 for more details on this header. Refer to
section 2.6 for detailed rules on PIPs that can allow synchronous responses.

HANDLING PACKAGING ERRORS

Errors that are encountered during packaging are handled as follows:

o Ifthe message being packaged is the first message in the PIP (i.e., the partner has
never seen a message for this PIP instance before), then the error MAY be logged
internally and/or handled according to the local policy.

o Ifthe message being packaged is a response action message, unless the error is
generic enough to happen while packaging any message — either fatal,
irrecoverable, or both — then an Exception of type “General Exception” with
error code PKG.MESG.GENERR (see Table 6Fable-6TFable 6Fable 6Table
6Table-6Table 6Fable-5) SHOULD be sent to the partner and the local instance of
the process must be aborted. If tFhe packaging/transmission of the exception #ay
fails, #-whieh-case-a Notification of Failure PIP instance SHOULD NOT be
initiated.

o Ifthe message being packaged is a signal, such as Receipt Acknowledgment or
Exception, then the error MAY be logged internally and/or handled according to
local policy. Also, the local instance of the PIP process MUST be terminated.

COMPLIANCE SUMMARY

This summary is for convenience only and is not guaranteed to contain all compliance
statements. For complete compliance knowledge, read the entire specification.

The rules specified in the "General Packaging Rules" and "Packaging Steps" sections
above MUST be followed.

©2001 by RosettaNet. All rights reserved. 53

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

2.3.4 Unpackaging the RosettaNet Business Message

This section of the specification discusses the unpackaging of the RosettaNet Business
Message. Critical to the discussion of unpackaging is the handling of errors.

The Delivery Header carries the sender ID. The Service Header carries information on
which PIP is being executed, as well as the Instance ID of the message. This
information is necessary for the recipient of the message to notify the sender in case of
errors in the message.

If the recipient encounters errors before successfully reading the Delivery Header and
the Service Header, a mechanism is needed to identify the sender and other
information so that errors can be reported back. This is accomplished through
transport-level debug headers that supply this information. However, it is expected
that debug headers would only be used in the set-up phases of new systems and/or
when starting to implement RosettaNet PIPs with new trading partners. RosettaNet
discourages the use of debug headers during production for obvious reasons. Refer to
the sections on debug headers in section 2.4 for further details.

2.3.4.1 Unpackaging Steps

Unpackaging involves extracting the various components of the business message and
simultaneously performing validation steps where applicable.

The steps described in this section are descriptive rather than prescriptive.

IDENTIFYING THE RESPONSE TYPE

In the case of a message received through an HTTP post, the requester posting the
message may have requested that the response be sent back synchronously, on the
same HTTP connection. This information is carried in the HTTP entity header “x-RN-
Response-Type”. Note that such a synchronous response is only possible if the
requesting message came through HTTP. If the message was received through another
transfer protocol, or if the above header is not present, then the message MUST be
treated as if the response is to be sent asynchronously.

VERIFYING THE SIGNATURE

If the incoming RosettaNet Business Message is signed, the recipient MUST verify
the signature. Signature verification and Sender Authentication are usually done
together. Hence, in order to perform signature verification effectively, this step MAY
be postponed until the Delivery Header is extracted completely. Refer to the section
“Authenticating the Sender” for more details. The incoming message MUST be
discarded if the signer is either unknown or not trusted, if the integrity of the message
cannot be verified, or if this step failed for any other reason. In such cases, the error
UNP.MESG.SIGNERR MAY be internally logged according to local policy. An
Exception MUST NOT be sent to the sender of the message unless the transport
headers carried debug information. If the message contained debug information in the
transport headers, and if the recipient’s policy allows notification of security errors to

54

©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Unpackaging the RosettaNet Business Messa

the sender, an Exception MAY be sent. However, this is not recommended for
security reasons.

EXTRACTING AND VALIDATING THE PREAMBLE

The Preamble, which is the first body part of the multipart/related message, is
extracted and validated. For detailed rules on validation of any XML body part, refer
to section 2.1.2.2.

If any of these tasks fail, the message MUST be discarded and the error
UNP.PRMB.READERR or UNP.PRMB.VALERR (as the case may be) MAY be
logged internally per local policy. An Exception signal MUST NOT be sent to the
sender at this point as the sender is not yet identified, unless the incoming message
contained debug headers in the transport headers. If the message contained debug
headers in the transport headers, and if the recipient’s policy allows notifying the
sender of errors during the initial setup stages (debug stages), an Exception with type
value of “General Exception” MAY be sent.

EXTRACTING THE DELIVERY HEADER

The second body part, which is the Delivery Header, is extracted and validated per the
validation rules. If an error is encountered, then the message MUST be discarded and
the error UNP.DHDR.READERR or UNP.DHDR.VALERR (as the case may be)
MAY be logged internally per local policy. An Exception signal MUST NOT be sent
to the sender at this point as the sender is not yet identified, unless the incoming
message contained debug headers in the transport headers. If the message contained
debug headers in the transport headers, and if the recipient’s policy allows notifying
the sender of errors during the initial setup stages (debug stages), an Exception with
type value of “General Exception” MAY be sent.

AUTHENTICATING THE SENDER

Once the sender ID is extracted from the Delivery Header, the sender is authenticated
as follows:- |

If the message was signed, verify that the signature belongs to the trading partner who
sent this message. Authentication failures MAY be logged internally. An Exception
MUST NOT be sent for security reasons. As in the other cases, if local policy allows,
an Exception MAY be sent if the debug header is present in the transport headers in
the incoming message.

Note that in the case of an unknown sender, the message will not be signed, and
therefore no authentication will be needed.

EXTRACTING THE SERVICE HEADER

The third body part of the Multipart/related message is extracted.

If the content-type is “application/XML”, then the Service Header was not encrypted.
In such a case, this body part constitutes the Service Header.

©2001 by RosettaNet. All rights reserved. 55

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

If the content-type is “application/pkcs7-mime”, then the payload and the Service
Header were encrypted. In this case, this body part MUST be decrypted. Decryption
MUST result in a multipart/related entity. The first body part in this enclosed
multipart/related entity is extracted. This MUST be the Service Header.

If the decryption or the extraction of the Service Header fails, the message is discarded
and the error UNP.MESG.DCRYPTERR or UNP.SHDR.READERR (as the case may
be) MAY be logged internally, per local policy. As in previous cases, an Exception
signal MUST NOT be sent to the sender at this point, as the-senderisnot-yet
identifiedre is not yet enough information available to populate the Exception's
Service Header, unless the incoming message contained debug headers in the transport
headers. If the message contained debug headers in the transport headers, and if the
recipient’s policy allows notifying the sender of errors during the initial setup stages
(debug stages), an Exception with type value of “General Exception”’MAY be sent

VALIDATING THE SERVICE HEADER

The Service Header MUST be validated per the rules specified in section 2.1.2.2. If
the header is found to be invalid (i.e., the error UNP.SHDR.VALERR applies), the
error MAY be logged internally, per local policy. Again, an Exception signal cannot
be sent to the sender at this point-as-thesenderisnot-yetidentified, unless the

incoming message contained debug headers in the transport headers. If the message
contained debug headers-in-the-transpert-headers, and if the recipient’s policy allows
notifying the sender of errors during the initial setup stages (debug stages), an
Exception MAY be sent.

Once the contents of the Service Header are extracted, the following validations
MUST be performed:

e Sequence validation. The incoming message is related to the proper instance of
an already executing PIP, or a new PIP instance is initiated if this is the first
message of the PIP. If this step fails (e.g., if the message does not correspond to
any PIP configured between the sender and the recipient, or if the instance IDs or
the PIP/activity/action codes do not correspond to valid sequence (for instance,
the request was referring to PIP 3A4, while the response says it is for PIP 3A7)),
then an Exception MUST be sent to the sender if the incoming message is an
action message. The exception type in the Exception is set to “General Exception”
and the error code is set to UNP.MESG.SEQERR. If the incoming message is a
signal, then the error MAY be logged according to local policy.

e Synchronous Response Specification Verification. If the incoming message is
the first message for this PIP instance, and is received through an HTTP POST,
and requires that the response be sent synchronously in the same HTTP
connection, and the recipient supports synchronous message exchange, then the
recipient MUST verify that the PIP specification allows for a synchronous
response for this message. If such verification fails, then the error MAY be logged
internally and an exception MUST be sent back synchronously, within the same
HTTP connection. Similarly, if the HTTP header requires asynchronous response
and the PIP specification prohibits asynchronous response, then an exception
MUST be sent back asynchronously, if the action requires either a response or a
Receipt Acknowledgment. If neither a response to this action nor a Receipt

56

©2001 by RosettaNet. All rights reserved.

Release-foer-ValidatienValidated 13 July 2001Section 2, Unpackaging the RosettaNet Business Messa

Acknowledgment is required, then a Notification of Failure PIP is initiated. The
error code used for this error, in case an Exception needs to be sent, is
UNP.MESG.RESPTYPERR.

e Authorization of Sender. Note that though the sender’s signature may have
already been verified earlier while unpacking the Delivery Header, authorization
of the sender (i.e., verifying whether the sender has the authority to participate in
this PIP), cannot happen until the Service Header is unpacked. Any error in such
verification is treated as a security error and MAY result in internal logging. An
Exception MUST NOT be sent back to the sender of the message for security
reasons. As in the other cases, if local policy allows, then an Exception MAY be
sent if the debug header is present in the transport headers in the incoming
message. However, if the incoming message requires synchronous response,
failure to authenticate or authorize the sender MUST result in the receiver either
sending an HTTP 403 response code or closing the connection with no response.

e Manifest Verification. If this is an action message, then the manifest is verified
against the attachments (for the existence of the number of attachments as
specified in the manifest, the existence of the specified Content-ID, and the
corresponding content-type). If the verification fails, an Exception is sent to the
sender with the exception type of “General Exception” and an error code of
UNP.SHDR.MNFSTERR. This Exception MUST also be the result if the
manifest indicates that Non-RosettaNet Service Content is present in the message
and such content is not supported by the solution. -Note that the manifest is
verification step MAY be deferred until the entire message is unpacked. However,
this step MUST be performed before sending a Receipt Acknowledgment. The
result of the verification MUST be the same whether this step is performed now
or later.

EXTRACTING AND VALIDATING THE SERVICE CONTENT

The Service Content is extracted. (Note that whether or not the message was
encrypted, either the Service Content or the encrypted Service Content is the body part
after the Service Header.) In case the Service Content was encrypted, it MUST be
decrypted. The Service Content is validated per the rules specified in section 2.1.2.2.

Processing an Action Message

If this is an action message, failure to- decrypt, read or validate the Service Content
MUST result in an Exception being sent -if either a Receipt Acknowledgment or a
response is required for this action. In such a case, the exception type is “Receipt
Acknowledgment Exception”. The error codes to use in the exception are
UNP.MESG.DCRYPTERR, UNP.SCON.READERR, or UNP.SCON.VALERR,
depending on whether the error happened while decrypting, reading or validation of
the Service Content, respectively.

If neither Receipt Acknowledgment nor Response is required, then exceptions in
processing the action message MUST result in initiation of the Notification of Failure
PIP.

©2001 by RosettaNet. All rights reserved. 57

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

Refer to the below step “Processing Attachments” for more detailed instructions on
extracting and validating the attachments.

If the processing of the action message completed without any error, the message
MUST be persisted per local policy. A Receipt Acknowledgment MUST then be sent
if the action requires a Receipt Acknowledgment. If the incoming message was signed
and non-repudiation of receipt is required, then the Receipt Acknowledgment MUST
carry the digest of the incoming message. For rules on computing the digest refer to
the “Non-Repudiation of Receipt” section.

Processing a Signal Message

If this is an Exception, then the corresponding PIP instance must be aborted despite
inability to read the Exception. If this is a Receipt Acknowledgment, then failure to
read or validate the Receipt Acknowledgment MUST be treated similarly to the case
where the Receipt Acknowledgment was never received; this error MAY also be
logged internally. If the signal passes validation it is persisted per local policy. The
corresponding PIP instance either completes (if this is the final signal) or continues (if
this is not the final signal).

Processing Attachments

Body parts that follow the Service Content must be treated as attachments. Each
attachment body part must specify the Content-ID for the attachment. If the Content-
ID is missing or invalid, the receiver MUST send a General Exception back to the
requester.

NON-REPUDIATION OF RECEIPT

When non-repudiation of receipt of an action message is required, the recipient of the
message computes a digest of the received multipart/related body part, which is the
first body part of the multipart/signed message. This computation MAY have been
done as part of the signature validation step. Theis digest MUST be-extracted-from

the-original-(recetved)signed-messagesthen be base-64 encoded (if not already), and
included in the Receipt Acknowledgment in the “OriginalMessageDigest” field.

Note that non-repudiation of receipt is only required when the message is being
accepted for processing. Hence, for messages that result in an Exception while
unpackaging or validation, there is no need for non-repudiation of receipt.

UNPACKAGING AND ERROR HANDLING SUMMARY

This section summarizes in graphical and tabular form the entire message processing
flow and the error handling processes and messages discussed in the previous sections.

2.6.7 shows the mandatory Error Codes and the associated descriptions.

58

©2001 by RosettaNet. All rights reserved.

Release-for-ValidatienValidated 13 July 2001Section 2, Unpackaging the RosettaNet Business Messagé%mﬁ'

Business-
Message

Verify Signature and
Remove Encapsulation

| Read Preamble

Handle Error

UNP.MESG.SIGNERR

5| Handle Error

Success? No
Yes

| Validate Preamble |

UNP.PRMB.READERR

,| Handle Error

No
Success?
Yes

Read Delivery Header

UNP.PRMB.VALERR

Handle Error

A

Success? No
Yes

Validate Delivery Header

No

UNP.DHDR.READERR

Handle Error

y

Success?

PayCont

ncrypted? Decrypt |

Read Service Header

UNP.DHDR.VALERR

Handle Error

UNP.MESG.DCRYPTERR

,| Handle Error

Success? No
Yes

Validate Service Header

No

UNP.SHDR.READERR

Handle Error

Success?

Payload

ncrypted2 Decrypt Payload |

Read Service Content

A 4

UNP.SHDR.VALERR

Errors above require debug
headers to send Exception.

Errors below always
sent as Exception.

Handle Error

UNP.MESG.DCRYPTERR

Handle Error

No
Success?
Yes

| Validate Service Content |

A 4

UNP.SCON.READERR

Handle Error

No
Success?
Yes

Persist Message,
Send RctAck if req'd,
Validate Content
& Perform Action

A 4

UNP.SCON.VALERR

End

Figure 18. Entire Message Processing Flow

©2001 by RosettaNet. All rights reserved.

59

RosettaNet Implementation Framework: Core Specification Release for Validation 13 July 2001

Handle Error Code

SvcHdr
Parsed?

Debug
Headers?

Local policy
= Send
Exception?

A 4

Send Error Code and
information to partner.
Exception

v

Discard Business-Message
and handle event per local
conventions

[notify system support staff]

Figure 19. “Handle Error” Flow

2.3.5 Intermediary-Routed Business Messages

Intermediary-Routed messages are no different from the Peer-to-Peer messages. The
intermediaries MUST always be able to read the Preamble and the Delivery Header.
This is all the information needed to identify that this is a RosettaNet message and to
identify the sender and the