
Design and Implementation of
a Document Assembly Workbench?

Helena Ahonen1, Barbara Heikkinen2, Oskari Heinonen2,
Jani Jaakkola2, Pekka Kilpeläinen2, and Greger Lindén2 ??

1 University of Tübingen, Wilhelm-Schickard-Institut für Informatik,
Sand 13, D–72076 Tübingen, Germany

2 University of Helsinki, Department of Computer Science,
P.O. Box 26 (Teollisuuskatu 23), FIN–00014 University of Helsinki, Finland

Abstract. Computers support the management of large collections of text docu-
ments, but efficient reuse of document collections for producing new documents
remains inherently difficult. We describe and discuss the design and implemen-
tation of a document assembly system based on a document assembly model,
where the user produces new specialized documents by querying and browsing a
collection of structured document fragments.

1 Introduction

The role and the concept of documents have undergone a tremendous change. A docu-
ment of today can be an active and dynamic entity, which is not only created by a user,
but also collected, combined and customized from reusable documents [14]. Progress
in data technology has greatly facilitated creating, storing, retrieving and disseminating
individual documents, but the problem of easily and effectively reusing existing and
often large document collections remains still largely unsolved.

One of the basic problems is to provide, or at least to support the on-demand gener-
ation of individualized documents through dynamic document assembly. Bydocument
assemblywe mean computer-aided construction of new documents from a collection of
document material. Such reuse includes finding the relevant document building blocks,
modifying them as needed, and stitching the pieces together to make a new document.
The lack of precise computational and conceptual models of document assembly hin-
ders the development of widely applicable systems. Even though many corporate-level
document assembly activities are under way (see, e.g., [17]), no generally accepted
models of document assembly exist yet.

? This work is supported by the Finnish Technology Development Centre (TEKES) and
seven Finnish enterprises (Aamulehti Group, Oy Edita Ab, National Board of Education,
WSOY, Helsinki Media, Lingsoft, Inc., and MTV3). Moreover, the grants by the Academy
of Finland (Helena Ahonen), the Finnish Cultural Foundation (Barbara Heikkinen), and the
350th Anniversary Foundation of the University of Helsinki (Oskari Heinonen) have provided
additional support.

?? Authors’ e-mail: {Helena.Ahonen, Barbara.Heikkinen, Oskari.Heinonen, Jani.Jaakkola,
Pekka.Kilpelainen, Greger.Linden}@cs.Helsinki.FI.



We describe a document assembly model and architecture, which we have devel-
oped to study principles and methods of intelligent document reuse. The work is done
in an on-going research and development project called “Structured and Intelligent Doc-
uments (SID)”. Document assembly is a central goal application of the project. As the
basis for the project we consider structured documents marked up using SGML.

Standard Generalized Markup Language (SGML) [10] is an international stan-
dard [11] for defining application and platform independent document markup lan-
guages, and for encoding documents using the defined markup. An SGML application
is based on a Document Type Definition (DTD), which defines the structure of a class
of related documents and the markup used for indicating them, and upon which the
manipulation of the documents can be based. SGML has been widely adopted by in-
dustry since it offers a framework for creating structured documents with high potential
for longevity and multi-purpose reuse. The SGML standard does not, however, provide
ready solutions for managing or processing of large document collections. Although
one of the strengths of the SGML technology is to allow several representations and
formats to be generated from the same documents, reuse of documents by dynamic as-
sembly of structure elements is still an unsolved problem, and hardly any techniques or
tools exist. The necessity of assembly is, however, clearly seen and considered to be of
great importance [13, 15].

We have developed a document assembly framework based on versatile recogniz-
ing and manipulating ofdocument fragments, which are consistent and relatively in-
dependent document parts used as the basis for new assemblies. Similar ideas recur
at document manipulation and IR meetings under different names, such as passages,
semantic fragments, information units, minimal revisable units, or micro documents.
The assembly framework is not inherently SGML specific, but the possibility of using
generic semantic document markup and the existence of tools for a standardized formal-
ism makes the implementation of a document assembly system based on the fragment
framework much easier. Our approach to document assembly is closely related to the
work reported by Davis and Hey [8]. They consider the extraction of a set of multi-
media documents from a digital library and their presentation as a single hypermedia
document. Our work differs from theirs, e.g., in the employment of generic SGML
structures to allow the assembly result to be further transformed to the final delivery
format, be it digital or hard-copy.

The rest of this paper is organized as follows. In the next section we present our doc-
ument assembly model and discuss additional information that can be used to support
intelligent assembly. Then in Sect. 3 we describe our document assembly prototype, its
user interface, architecture and implementation. Finally, we give a short conclusion and
discuss some open problems.

2 Intelligent Document Assembly

Document assembly means computer-aided construction of new documents using sev-
eral existing document sources. Assembly is usually an interactive process (Fig. 1),
where an author or editor uses various tools to find appropriate sources and to con-
figure the intended document. The process consists of selecting, combining, and modi-



document

collection
document

fragments

tailored

document

browsing querying

iteration selection

transformation

Fig. 1.Document assembly process.

fying document components. The document composer works iteratively on a document
collection until a result document is obtained. Even though producing carefully edited
publications requires human creativity, we believe that increasingly challenging assem-
bly tasks should, and could, be supported much more by computerized methods than
that are available today.

The assembly process is preceded by initialization actions to populate the document
collection and to analyze and preprocess the documents for the assembly. We allow het-
erogeneous document collections containing documents with differing document types.
Moreover, the set of DTDs used is not fixed, e.g., no DTD specific semantics is assumed
to be available. Hence, the assembly process has to rely on the knowledge that can be
extracted from the documents and their DTDs only. To collect this knowledge, which is
used, e.g., to choose default formatting and to recognize useful fragments (see below),
the document elements are firstclassifiedby mapping each element to some generic el-
ement [2]. For instance, all the elements that contain plain text (e.g., SGML #PCDATA)
only and are of length less than 80 characters are mapped to elements calledString. In
the same way, longer elements which containStringelements or plain text, are mapped
to elements calledParagraph.

In addition to classification, the documents are divided intofragments. A fragment
is a coherent, contiguous, and relatively independent part of a document. To get best
results for document reuse each fragment, like a chapter or a section, should be initially
authored to discuss a well-defined topic. However, it is often not possible to manually
re-structure an existing document base. To enable fragment-based assembly from ex-
isting document collections we have developed automatic statistical methods for the
recognition and markup of probably useful document fragments [4, 3]. Fragmentation
uses the results of classifying document contents using generic elements: the lowest-
level fragments are usually sequences of elements classified as genericParagraphs.
Additionally, the fragment hierarchy consists of the ancestor elements of these minimal
fragments.

Preprocessing, or the earlier writing phase, may also include adding supplementary
information that can guide the assembly. Adding intelligence to documents is called



seeding[9, 1]. We have been experimenting with a manually seeded document collec-
tion of three text books on control engineering. The contents of the books have been
classified by the authors according to the educational level and the nature of the con-
tent. The classification is attached to the corresponding document elements as SGML
attributes. Information can also be added automatically. For instance, we have computed
keyword lists for the document fragments.

In the first actual assembly phase, the user selects fragments to be included in the
resulting document. Our system allows four ways to select elements. The first one is
a rather standard search that includes full-text search with conditions on the structure
and attribute values. For instance, within our control engineering library, the user might
want to create a collection of exercises for college students majoring in data communi-
cations.

The second way is based on browsingclusters, which are collections of document
fragments that are mutually similar within the cluster but dissimilar to fragments outside
the cluster. Similarity of two fragments is measured in a standard fashion by calculating
the proportion of their common key words. Clusters are used as a way to present large
portions of the collection as browsable clumps of similar content. An interactive cluster
based browsing approach known as Scatter/Gather was introduced by Cutting et al.,
who also presented efficient algorithms for it [7, 6]. Scatter/Gather browsing has been
reported to be an effective way to utilize unfamiliar information collections in a way
that is complementary to traditional query based retrieval of documents [16].

The third possibility is to browse the document collection by navigating the hier-
archical document structure and selecting the desired fragments manually. Reasonable
use of this selection method usually requires that the two above-mentioned selection
methods have already been used to reduce the document collection.

The fourth possibility is to start from the selected fragments and let the system
search for similar or related fragments in the collection. Again, measuring the similarity
of fragments can be based on comparing the sets of their key words.

Moreover, the assembly system allows the user to modify the set of selected doc-
ument fragments in order to obtain the material of a final assembly. The modifications
include discarding and rearranging the fragments, moving or copying selected frag-
ments to be part of an existing fragment, and replacing a fragment either by its parent
or children elements in the fragment hierarchy. Modifications can be controlled by a
DTD that is constructed in the preprocessing phase. The classification gives a natural
way to construct a simple generic DTD that expresses the hierarchy of generic elements
only, e.g., that chapters may contain sections but not vice versa. As the result of the
selection phase, we have an ordered list of document fragments.

Intermediate assemblies can be presented to the user, e.g., as HTML pages, by
adorning each generic element with suitable formatting markup. However, the final
assembly should be a valid and coherent SGML document, such that it can be further
processed by other SGML applications. This may necessitate some restructuring, e.g.,
if we have a sequence of sections and one paragraph in the middle of them, we might
need to create a new section to wrap the paragraph. Moreover, in order to be sensi-
ble, the assembly may need to be completed with additional elements. For instance, a
sequence of paragraphs could be completed by a section title and an introductory para-



graph, or targets of cross-reference links could be included. The heuristics guiding these
complements are based on the knowledge of the role of the generic elements.

One of the benefits of classifying the original elements by mapping them to generic
elements is that we can attach semantics to the generic elements, e.g., how to format
them. Hence, we are also able to format and print the resulting assemblies, achieving a
uniform presentation for various elements from heterogeneous documents.

3 SAW — The SID Assembly Workbench

This section describes our prototype of a document assembly system, which we call the
SID Assembly Workbench, or SAW. We have developed the system in order to test and
to evaluate the conceptual model of an intelligent document assembly process, which
we discussed above.

The assembly starts from a collection of document fragments. The user assembles
a result document by iteratively selecting and reordering fragments from the collection.
When the user is satisfied with the result, he/she saves it. If the result document contains
fragments over several DTDs, the system may transform them to conform to a selected
target DTD. SAW does not support actual editing of the assembly result. For producing
a final deliverable such as a printed book, an on-line document or a CD-ROM, the result
document can be further edited and formatted using an SGML editor or publishing
system.

3.1 The SAW User Interface

The SAW user interface is based on the concept of aview, which is a representation
of either the document collection or the result at some state of the assembly process.
Conceptually, a view is an ordered sequence of assembly components, which can be
document fragments, clusters of fragments, or other views. The SAW user interface
consists of a result window that presents the view together with the commands that can
be used for manipulating the result (Fig. 2). An initial view presents the entire document
collection. The operations on a view always create a new view. By modifying the view,
the user gradually moves towards a more final result consisting of a sequence of useful
document fragments. The user can also store intermediate views, e.g., a draft assembly
of a chapter. Stored views can be retrieved and included in new result views.

The user interface is divided into three logical parts. The first part presents a view
of the document collection, also called thecurrent viewof the collection. The second
part consists of the commands available for modifying the current view. They include
selection and reordering of fragments, and clustering and searching in the collection,
as well as advanced querying of the underlying database. The third part of the user
interface provides a way of saving the results, i.e., the assembled views.

The current view consists of a table of rows, one row for each assembly component
in the view. Figure 2 presents an initial view of a collection of three Finnish text books
on fuzzy logic and control engineering. Each document element is presented as a short
fragment summary in the current view. The fragment summary may include the name
of the fragment (as is the case in Fig. 2) as well as the position of the fragment in the



Fig. 2. The user interface of SAW.



Fig. 3.Presentation of an intermediate view.

document structure, an indication of its size and a list of the most frequent keywords
contained in the fragment (Fig. 3). For example, the third fragment (Mitä on sumea logi-
ikka? . . .) is located in the first section of the second chapter, it has a size of 7 KB and
it consists of 24 SGML elements. The two most frequent keywords of the fragment are
sumea(fuzzy), appearing 26 times, andsisälämpötila(indoor temperature), appearing
12 times. By clicking on the fragment name, the user may view the textual contents of
the fragment.

Each fragment is preceded in the current view by a field for an order number and a
selection button. The order numbers can be changed to rearrange the view according to
the numbering. Selections define which fragments are affected by the view manipula-
tion commands. All fragments in the view can be selected or deselected at once using
the buttonsSelect allandUnselect all. Any selecting or reordering of the current view
can be undone using the buttonReset view.

ThePreserve & Orderbutton discards all unselected fragments from the view, and
arranges the remaining ones according to their order numbers. TheZoom inbutton
replaces selected document fragments by their immediate subelements, e.g., tables by
their rows.Zoom outcorrespondingly allows the user to navigate in the document struc-
ture to a higher level by replacing, say, selected section elements by their enclosing
chapters. To make a consistent result document, we often want to include also chap-
ter titles and introductory paragraphs that form the context of a chosen fragment. The
Completebutton includes fragments relevant to the selected ones in the current view.

The SAW system also allows the user to browse the contents of the collection as
clusters, which gives the user an extracted view of the documents. Thus, the user can
choose the appropriate clusters and fragments for re-clustering, and use these to search
for appropriate fragments on new subsets of the document collection. The browsing
mechanism employs the Scatter/Gather clustering techniques developed by Cutting et
al. [7, 6].

The user may alsosearchfor keywords in the selected fragments, in the current view
or in the entire fragment collection. Fragments that contain the specified keywords are
returned in a new view. The user may also search for fragmentssimilar to the selected



Web server/CGI scripts TranSID server

Fragment serverServer interfaceView

Web client

HTML form

TranSID query

partial HTML

HTTP request

Fig. 4. SAW architecture.

ones in the current view. Advanced users may also formulate powerful queries using
the TranSID query language [12] of the underlying database server. The result of an
advanced query may be presented as a new view, an HTML page or plain text.

Figure 3 shows an intermediate (or possibly final) view of the document collection.
The user has performed the following actions. He/she has selected and zoomed in on
the first book, then selected the front matter, the two first chapters and the reference
list (LÄHDELUETTELO), and finished by zooming in on the second chapter. This very
simple view presents a digest of the book that could be used, e.g., as a marketing sample
of the whole book.

When the user is satisfied with the current view he/she may save it for later use.
The current view may also be exported as SGML fragments; exporting may include
transformation of fragments so that they conform to a certain selected DTD. Fragments
can also be stored unmodified. During the assembly process, the user may return to the
original view of the collection, or to the saved views of the current session. The previous
view may always be reached by clicking theBackbutton in the browser.

3.2 Architecture and Implementation

The SID Assembly Workbench is implemented as a Web server. The architecture con-
sists of a user interface running in a Web browser, a server interface, and a fragment
server (Fig. 4).

The view interface is realized as an HTML form, which together with the browser
constitutes the client side of the SAW architecture. The form is constructed from a con-
stant part, which contains the command buttons, and a dynamic part, which presents
the contents of the current view. A hidden numeric identifier is attached to each frag-
ment, cluster or view shown in the current view. The identifiers connect the assembly
components of the current view to the corresponding document structures maintained
by the fragment server. The state of the assembly process is maintained mainly by these
identifiers in the view form. View modifications are realized by sending information
about the chosen action and the contents of the current view to the Web server using the
HTTP post method. The server interface scripts parse the request and pass it as a query
to the fragment server. The response of the fragment server is passed back to the user
as an HTML page.



The fragment server consists of a structured text database process. The structured
text database is based on the internal data structures of an SGML transformation lan-
guage called TranSID [12]. TranSID models documents as tree structures, and allows
any part of the document tree to be accessed. The tree structures are maintained in main
memory. The fragment server accepts queries expressed in the TranSID language, and
responds by returning plain text, HTML, or partial HTML to be presented as a new
view.

We chose the Web/HTML-based implementation of the user interface for several
reasons. A Web browser offers a familiar look-and-feel and provides many of the user
interface actions for free. HTML pages are easy to redesign, which makes the mainte-
nance and tailoring of the system easier. This allows tailored initial views to be offered
for different user groups. Also, an HTML interface is ready to be used over an intranet
or to be integrated in a Web site on the Internet. On the other hand, certain operations
are less flexible with a form-based user interface than they would be with a dedicated
direct manipulation interface. For example, ordering of fragments is less natural than
it would be in a drag-and-drop environment. Anyhow, this is not an inherent limitation
of the chosen architecture. A more elaborate implementation of the user interface, e.g.,
based on Java applets, would allow manipulation of the current view in a more direct
fashion.

We have tested the system with a collection of three text books and 3,125 statutes.
The text books together with their keyword lists comprise about 660 kilobytes of text
and 47,000 SGML elements. The size of the statute collection is about 12 megabytes,
or 327,000 SGML elements. The fragment server loads document structures in main
memory only when they are accessed, which implies that it takes only a few seconds to
start the server to access the collection.

Currently, all the user operations mentioned in the previous section have been imple-
mented, except for the completion of the result fragments. Also, assembled documents
can currently be exported in HTML form only. The classification and fragmentation
actions have been performed outside the current SAW implementation, but we expect
to integrate these preprocessing actions in the workbench as well.

4 Conclusion

We have presented a model and an implementation of a system for intelligent document
assembly. The system uses a database of SGML documents from which the user assem-
bles new documents. The assembly is based on document fragments: the user chooses
among document parts and selects appropriate fragments to be included in a new doc-
ument. The assembly system supports browsing and reorganizing of the fragments as
well as some more sophisticated techniques such as cluster-based browsing and struc-
tured search. The system is in a prototype phase and we are just beginning to evaluate
the usefulness of our assembly model. We expect that further prototyping with docu-
ment assemblies will reveal some real challenges, like managing explicit and implicit
dependencies between document fragments.

We consider document assembly in a large collection primarily as an in-house pub-
lishing activity. If an assembly interface is offered to the open public, concerns of copy-



right and security have to be taken into account. Solutions to the copyright and security
problem have been suggested in more restricted library environments [5], but imposing
restrictions on the use of the document material in a more liberal document assembly
framework like ours remains an open issue.

References

1. H. Ahonen, B. Heikkinen, O. Heinonen, J. Jaakkola, P. Kilpeläinen, G. Lindén, and H. Man-
nila. Intelligent assembly of structured documents. Technical Report C-1996-40, University
of Helsinki, Department of Computer Science, June 1996.

2. H. Ahonen, B. Heikkinen, O. Heinonen, and P. Kilpeläinen. Assembling documents from
digital libraries. In A. Hameurlain and A. M. Tjoa, editors,Proceedings of the 8th Interna-
tional Conference on Database and Expert Systems Applications, DEXA ’97, number 1308 in
Lecture Notes in Computer Science, pages 419–429, Toulouse, France, Sept. 1997. Springer-
Verlag.

3. H. Ahonen, B. Heikkinen, O. Heinonen, and M. Klemettinen. Discovery of reasonably-
sized fragments using inter-paragraph similarities. Technical Report C-1997-67, University
of Helsinki, Department of Computer Science, Nov. 1997.

4. H. Ahonen, B. Heikkinen, O. Heinonen, and M. Klemettinen. Improving the accessibility of
SGML documents – A content-analytical approach. InSGML Europe ’97, pages 321–327,
Barcelona, Spain, May 1997. Graphic Communications Association.

5. L. C. Anderson and J. B. Lotspiech. Rights management and security in the electronic library.
Research Report RJ 9977 (89065), IBM Almaden Research Center, Aug. 1995.

6. D. R. Cutting, D. R. Karger, and J. O. Pedersen. Constant interaction-time Scatter/Gather
browsing of very large document collections. In R. Korfhage, E. Rasmussen, and P. Willett,
editors,Proceedings of the 16th ACM SIGIR Conference, pages 126–134, Pittsburgh, PA,
USA, June 1993.

7. D. R. Cutting, J. O. Pedersen, D. Karger, and J. W. Tukey. Scatter/Gather: A cluster-based ap-
proach to browsing large document collections. In N. Belkin, P. Ingwersen, and A. Mark Pe-
jtersen, editors,Proceedings of the 15th ACM SIGIR Conference, pages 318–329, Copen-
hagen, Denmark, June 1992.

8. H. Davis and J. Hey. Automatic extraction of hypermedia bundles from the digital li-
brary. In Digital Libraries ’95, Proceedings of the Second International Conference on
the Theory and Practice of Digital Libraries, Austin, Texas, USA, June 1995. Available at
http://www.csdl.tamu.edu/DL95/papers/davis/davis.html .

9. P. M. English and R. Tenneti. Interleaf active documents.Electronic Publishing – Origina-
tion, Dissemination and Design, 7(2):75–87, June 1994.

10. C. F. Goldfarb.The SGML Handbook. Oxford University Press, 1990.
11. ISO. Information Processing — Text and Office Systems — Standard Generalized Markup

Language (SGML), ISO 8879, 1986.
12. J. Jaakkola, P. Kilpeläinen, and G. Lindén. TranSID: An SGML tree transformation lan-

guage. In J. Paakki, editor,Proceedings of the Fifth Symposium on Programming Languages
and Software Tools, pages 72–83, Jyväskylä, Finland, June 1997. Technical Report C-1997-
37, University of Helsinki, Department of Computer Science.

13. W. E. Kimber. Re-usable SGML: Why I demand SUBDOC. InSGML ’96, Boston, MA,
USA, Nov. 1996. Graphic Communications Association.

14. D. M. Levy. Document reuse and document systems.Electronic Publishing – Origination,
Dissemination and Design, 6(4):339–348, Dec. 1993.



15. J. McFadden. Hybrid distributed database (HDDB) and the future of SGML. InSGML
Europe ’96, pages 321–327, Munich, Germany, May 1996. Graphic Communications Asso-
ciation.

16. P. Pirolli, P. Schank, M. Hearst, and C. Diehl. Scatter/Gather browsing com-
municates the topic structure of a very large text collection. InProceedings
of the Conference on Human Factors in Computing Systems, CHI ’96, pages
213–220, Vancouver, British Columbia, Canada, Apr. 1996. ACM. Available at
http://www.soe.berkeley.edu/~schank/parc/pp_txt.htm .

17. D. Stribling, T. Hunter, L. Olszewski, A. Corrigan, R. Mullis, and L. Allen. A real world
conversion to SGML. InProceedings of the 14th Annual ACM Conference on Systems Doc-
umentation, SIGDOC ’96, pages 75–86, Research Triangle Park, North Carolina, USA, Oct.
1996. ACM.


