Open Financial Exchange

Specification 1.5.1

© 1997, 1998 CheckFree Corp., Intuit Inc., Microsoft Corp. All rights reserved

Open Financial Exchange Specification Legend

Open Financial Exchange Specification ©1996-98 by its publishers: CheckFree Corp., Intuit Inc.,
and Microsoft Corporation. All rights reserved.

A royalty-free, worldwide, and perpetual license is hereby granted to any party to use the Open
Financial Exchange Specification to make, use, and sell products and services that conform to
this Specification.

THIS OPEN FINANCIAL EXCHANGE SPECIFICATION IS MADE AVAILABLE “AS IS”
WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, MICROSOFT, INTUIT AND CHECKFREE (“PUBLISHERS”) FURTHER
DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT, ALL OF WHICH ARE HEREBY DISCLAIMED. THE ENTIRE RISK
ARISING OUT OF THE USE OF THIS SPECIFICATION REMAINS WITH RECIPIENT. TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE
PUBLISHERS OF THIS SPECIFICATION BE LIABLE FOR ANY CONSEQUENTIAL,
INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE, OR OTHER DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) ARISING OUT OF ANY USE TO WHICH THIS SPECIFICATION IS PUT,
EVEN IF THE PUBLISHERS HEREOF HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

TABLE OF CONTENTS

Chapter 1 OVervieW. e e e e 13
1.2 IntroducCtion. oo e 13
1.1.1Design Principlesc i 14

1.2 Open Financial Exchange ataGlance. 16
1.2. 1 Data Transporto vttt e 16
1.2.2 Request and Response Model 18

L83 OFX VEISIONS . . .ottt it 19
1.4 COoNVENLIONS . . v vttt 20
Chapter 2 StruCtUre. e e e e e e 21
21LHTTP Headers 23
2.2 Open Financial Exchange Headers 24
221 0FXHEADER 25
2.2, 2 DAT A o 26
22.3VERSION ... 26
224 SECURITY ..t e 26
225ENCODINGand CHARSETot 26
226 COMPRESSION. 27
2.2.7 OLDFILEUID and NEWFILEUID. coo.... 27

23 SGML Details oo 27
23.1Compliance. 27
2.3.2Valid SGML Characterscooiuiiinnine.... 27
2.3.3Comments Not Supported 28

2.4 Open Financial Exchange SGML Structure 29
24 1 OVEIVIEW . . o ottt et e e e e e 29
2.4.2Case Sensitivity ... 29
24.3Toplevel ... e 29
244 MESSAQES .« v vt 30
2.4.5 Message Sets and VersionControl 30
246 Transactionsot 35
25The Signon Message Set.ttt e 37
2.5.1 Signon <SONRQ><SONRS> 37
2.5.2 USERPASS Change <PINCHRQ> <PINCHRS> 44
2.5.3 Signon Message Set Profile Information. 47
254 EXamples 48

2.6 External Data SUPPOItot 48
2.7 Extensions to Open Financial Exchange 49
Chapter 3 Common Aggregates, Elements, and Data Types 51

OFX 1.5.1 Specification 11/23/98

3.1 Common AQQregatesttt e 51

3.1.1 Identification of Financial Institutions and Accounts 51
3.1.2 Format of User-Supplied Numbers 51
3.1.3Balance Records <BAL>.ottt 52
3.1.4 Error Reporting <STATUS> i 53
3.2CommonElements. 54
3.2.1 Financial Institution Transaction ID <FITID>. 54
3.2.2 Server-Assigned ID <SRVRTID>, <SRVRTID2> 55
3.2.3 Client-Assigned Transaction UID <TRNUID>. 55
3.2.4 Token <TOKEN>, <TOKEN2>ot 56
3.2.5 Transaction Amount <TRNAMT>, 56
3.2.6 Memo <MEMO>, <MEMO2> i, 56
3.2.7 Date Start and Date End <DTSTART><DTEND>.......... 57
3.28CommonData Types 58
3.2.9 Amounts, Prices, and Quantities. 60
3.220Language 61
3.2.11 Other Basic Data Typescv i 61
Chapter 4 OFX SeCUrity e e 63
4.1 Security Concepts in OFX 63
411 AChIteCtUre. . . .o 63
4.1.2 Security Goals. 64
4.1.3 Security Standards 64
4.1.4 FI Responsibilities. 65
4.1.5 Security Levels: Channel vs. Application 66

4.2 Security Implementation in OFX. 67
4.2.1 Channel-Level Security.o 67
4.2.2 Application-Level Security. o 69
Chapter 5 International Support 75
5.1 Language and Encoding. 75
5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>. 75
5.3 Country-Specific TagValues 76
Chapter 6 Data Synchronization 77
6.1 OVEIVIEW. . . ottt 77
6.2 Background. 77
6.3 Data Synchronization Approach. 78
6.4 Data Synchronization Specifics 79
6.5 Conflict Detection and Resolution. 82
6.6 Synchronizationvs. Refresh. 82
6.7 Typical Server Architecture for Synchronization. 84
6.8 Typical Client Processing of Synchronization Results 86

11/23/98 OFX 1.5.1 Specification

6.9 Simultaneous CoNNECLIONS.t oot e e 86

6.10 Synchronization Alternatives e 87
6.10.1 Lite Synchronization 0. 87
6.10.2 Relating Synchronization and Error Recovery 89

6.11 Examples 89

Chapter 7 FIProfile. 93

7. L OVEIVIBW. . o o 93
7.1.1MeSsage SetS. .. 93
7.1.2Version Controlt 94
7.1.3BatchingandRouting 95
7.1.4 Client Signon for Profile Requests 95
7.1.5 Profile Request <PROFRQ>. it 96

7.2 Profile Response <PROFRS> 97
7.2 1 Message Set. e 99
7.22SignonRealms 103
7.23Status CodeS . .. oo 104

7.3 Profile Message Set Profile Information. 104

Chapter 8 Activation & Account Information..................... 105

8. L OVEIVIBW. . o oo e e 105

8.2 Approaches to User Sign-Up withOFX 105

8.3Users and ACCOUNES oottt 106

8.4 Enrollment and Password Acquisition 107
8.4.1UsSerIDS 107
8.4.2 Enrollment Request <ENROLLRQ> 107
8.4.3 Enrollment Response <ENROLLRS>. 109
8.4.4 Enrollment Status Codes 109
A5 Examples 110

8.5 Account Information 111
8.5.1 Request <ACCTINFORQ> 112
8.5.2 Response <ACCTINFORS>. 112
8.5.3 Account Information Aggregate <ACCTINFO>............ 113
8.5.4Status Codes 113
855 Examples 114

8.6 Service Activation. 115
8.6.1 Activation Request and Response 116
8.6.2 Service Activation Synchronization. 119
8.6.3Examples 120

8.7 Name and AddressChanges 121

8.7.1 Change User Information Request <CHGUSERINFORQ> .. 121
8.7.2 Change User Information Response <CHGUSERINFORS> . 122

OFX 1.5.1 Specification 11/23/98

8.7.3Status Codes. . .. oot i 122

8.8 Signup Message Set Profile Information 123
Chapter 9 Customer to Fl Communication....................... 127
9.1 The E-Mail Message Set 127
9.2E-Mail MeSsages 127
9.2.1 Regular vs. Specialized E-Mail 128
9.2.2 Basic <MAIL> Aggregate 128
9.2.3 E-Mail <MAILRQ><MAILRS> 130
9.2.4 E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS> . 132
925E-MailExample. 133
9.3GetHTML Page e 136
9.3.1 MIME Get Request and Response <GETMIMERQ> <GETMIMERS> 136
932MIMEExample 137
9.4 E-Mail Message Set Profile Information. 139
Chapter 10 Recurring Transactionsc.coiiuenn... 141
10.1 Creating a RecurringModel 141
10.2 Recurring Instructions <RECURRINST> 142
10.2.1 Valuesfor<FREQ>. i 142
10.2.2 EXamples e 143
10.3 Retrieving Transactions Generated by a Recurring Model. 145
10.4 Modifying and Canceling Individual Transactions. 145
10.5 Modifying and Canceling RecurringModels. 145
105 1 Examples ... 146
Chapter 11 Banking. e 149
11.1 Consumer and Business Banking. 149
11.2CreditCard Data. oo 149
11.3 Common Banking Aggregates, 149

11.3.1 Banking Account <BANKACCTFROM> and <BANKACCTTO> 150
11.3.2 Credit Card Account <CCACCTFROM> and <CCACCTTO> 155

11.3.3 Bank Account Information <BANKACCTINFO> 156
11.3.4 Credit Card Account Information <CCACCTINFO> 157
11.3.5 Transfer Information <XFERINFO> 158
11.3.6 Transfer Processing Status <XFERPRCSTS>........... 160
11.4 Downloading Transactions and Balances. 161
11.4.1 Bank StatementDownload 162
11.4.2 Credit Card Statement Download 164
11.4.3 Statement Transaction <STMTTRN> 167
11.5 Statement Closing Information. 170
11.5.1 Statement ClosingDownload 170

Vi 11/23/98 OFX 1.5.1 Specification

11.5.2 Non-Credit Card Statement <CLOSING>. 172
11.5.3 Credit Card Statement Closing Request <CCSTMTENDRQ> 174
11.5.4 Credit Card Statement Closing Response <CCSTMTENDRS> 175

11.6 Stop Check.o 178
11.6.1Stop Check Add 179
11.6.2Status Codeso vt 182

11.7 Intrabank Funds Transfer. 183
11.7.1 Intrabank Funds Transfer Addition 184
11.7.2 Intrabank Funds Transfer Modification 187
11.7.3 Intrabank Funds Transfer Cancellation. 190

11.8 Interbank Funds Transfer. 192
11.8.1 Interbank Funds Transfer—US. 192
11.8.2 Interbank Funds Transfer — International Usage 193
11.8.3 Interbank Funds Transfer Modification 196
11.8.4 Interbank Funds Transfer Cancellation. 199
11.8.5 Multiple Interbank Funds Transfer 201

11.9WireFunds Transfer. 203
11.9.1 Wire Funds Transfer Addition. 204
11.9.2 Wire Funds Transfer Cancellation 207

11.10 Recurring Funds Transfer. 209
11.10.1 Recurring Intrabank Funds Transfer Addition........... 209
11.10.2 Recurring Intrabank Funds Transfer Modification. 212
11.10.3 Recurring Intrabank Funds Transfer Cancellation 215
11.10.4 Recurring Interbank Funds Transfer Addition........... 216
11.10.5 Recurring Interbank Funds Transfer Modification. 219
11.10.6 Recurring Interbank Funds Transfer Cancellation 222

11.11 E-Mail and Customer Notification. 223
11111 Banking E-Mail 223
11.11.2 Notifications 226
11.11.3 Returned Check and Deposit Notification. 227

11.12 Data Synchronization for Banking 229
11.12.1 Data Synchronization for Stop Check................. 230
11.12.2 Data Synchronization for Intrabank Funds Transfers 232
11.12.3 Data Synchronization for Interbank Funds Transfers 234
11.12.4 Data Synchronization for Wire Funds Transfers......... 236

11.12.5 Data Synchronization for Recurring Intrabank Funds Transfers 238
11.12.6 Data Synchronization for Recurring Interbank Funds Transfers 240

11.12.7 Data Synchronization forBankMail 242
11.12.8 <SYNCERROR> Status Codes 244
11.13 Message Setsand Profile. L. 244
11.13.1 Message Setsand Messages., 245

OFX 1.5.1 Specification 11/23/98 vii

11.13.2 Bank Message Set Profile. 256

11.13.3 Credit Card Message Set Profile. 259
11.13.4 Interbank Funds Transfer Message Set Profile. 260
11.13.5 Wire Transfer Message Set Profile. 261
1124 EXamples ..o 262
11.14.1 Statement Download. 262
11.14.2 Intrabank Funds Transfer 264
11143 Stop Checko 266
11.14.4 Recurring Transfers, 269
Chapter 12 Payments 279
12.1 Consumer and Business Payments 279
12.2 The Payee Model 279
12.2.1 Payee ldentifiers 280
1222 Payee Lists oot e 280
12.2.3 Standard Payee Lists 281
12.2.4 Summary — Identifying Payees 282
12.3 Identifiers Used in Payment Transactions 282
12.4The PaymentLifeCycle i 283
12.41 Payment Creationottt 283
12.4.2 Payment Modification 284
12.4.3 Payment Status Inquiry i 284
12.4.4 Payment Cancellation. 285
12.4.5 Delayed Payee Matching 285
12.5 Common Payments Aggregates. i 286
12.5.1 Payments Account Information <BPACCTINFO>. 286
12.5.2 Payment Information <PMTINFO> <PMTINFO2> 287
12.6 Payments Functions. 298
12.6.1 Payment Creationttt 300
12.6.2 Payment Modification 303
12.6.3 Payment Cancellation. 307
12.6.4 Payment Status Inquiry 308
12.7 Recurring Payments.t 310
12.7.1 Creating a Recurring Payment 311
12.7.2 Recurring Payment Modification. 314
12.7.3 Recurring Payment Cancellation. 318
12.8PaymentMail e 320
12.8.1 Payment Mail Request and Response 320
12.8.2 Payment Mail Synchronization 322
129 Payee Lists.o e 323
12.9.1 Adding a Payee to the Payee List. 325
12.9.2 Payee Modification 328

viii 11/23/98 OFX 1.5.1 Specification

1293 PayeeDeletion i 331

12.9.4 Payee List Synchronization. 333
12.10 Data Synchronization for Payments. 335
12.10.1 Payment Synchronization. 336
12.10.2 Recurring Payment Synchronization. 338
12.10.3 DiSCUSSION. . . . ottt e e e e e e e 340
12.11 Message Setsand Profile. oL 341
12.11.1 Bill Pay Message Sets and Messages 342
12.11.2 Bill Pay Message Set Profile <BILLPAYMSGSET> 346
1212 EXamples . ..o 350
12.12.1 Schedulinga Payment 350
12.12.2 Modifyinga Payment, 355
12.12.3 CancelingaPayment 359
12.12.4 Updating Payment Status 361
12.12.5 Scheduling a Recurring Payment 362
12.12.6 Modifying a Recurring Payment 364
12.12.7 Canceling a Recurring Payment. 367
12.12.8 Adding a Payee to the Payee List. 368
12.12.9 Synchronizing Scheduled Payments 370
Chapter 13 Investments e 375
13.1 Types of Response Information 376
13.2 SUD-ACCOUNLS . . . oo 376
13.3 Units, Precision, and Signs.o 376
1330 UNIS ..o e 376
13.3.2 PreciSionot 377
13,3 8 SIgNS . ot 377
13.4 Bank and Investment Transactions 378
13.5Money Market Funds 378
13.5.1 Separate Account at the Financial Institution 378
13.5.2 Sweep Account Within an Investment Account 379
13.5.3 Position Within an Investment Account. 379
13.6 Investment ACCOUNTSt t 379
13.6.1 Specifying the Investment Account <INVACCTFROM>. ... 379
13.6.2 Investment Account Information <INVACCTINFO> 380
13.6.3 Brokerage, Mutual Fund, and 401K Accounts 381
13.7 Investment Message Sets and Profile 381
13.7.1 Investment Statement Download 383
13.7.2 Security Information 386
13.8 Investment SECUNtieSot e 389
13.8.1 Security Identification <SECID> 389

OFX 1.5.1 Specification 11/23/98

13.8.2 Security List Request i 389

13.8.3 Security ListResponse 391
13.8.4 Security List <SECLIST> 392
13.8.5 Securities Information o 392
13.9 Investment Statement Download 398
13.9.1 Investment Statement Request. 399
13.9.2 Investment Statement Response 401
13.10 InvestmentE-Mail. 421
13.10.1 Investment E-Mail Request and Response. 422
13.10.2 Investment E-Mail Synchronization. 424
13.11 Complete Example 426
Chapter 14 Bill Presentment i, 433
141 OVEIVIEW. . . o ottt e i e e e e e e 433
14.1.1 Bill PresentmentModel 433
14.1.2 Serversand Message Sets. 433
14.2 Biller DireCtoryt e 434
14.2.1 Client Signon to the Biller Directory Server. 434
14.2.2 Search Arguments 434
14.2.3 Identification of Bill Publishers 434
14.2.4 Find Biller Request <FINDBILLERRQ>. 435
14.2.5 Find Biller Response <FINDBILLERRS> 436
14.2.6 Status Codes <FINDBILLERTRNRS> 439
14.2.7 Account Number Validation. 439
14.3 CUStOMEr SIgNUP . . . oo e e 440
14.3.1Enrollment. e 440
14.3.2 Account INQUIrYo ottt 440
14.3.3 Service Activation 442
14.3.4 Service Status Update for Groups of Customers 443
14.3.5 Biller Payment Restrictions 446
14.4BillDelivery.o e 448
14.4.1 Bill Delivery Process oot 448
14.42 BillListRetrieval 449
14.4.3 Bill Detail Retrieval 455
14.4.4 Table Structure Definition 459
14.4.5 Delivery Notification 461
145 BillPayment e 463
14.5.1 Remittance Information. 463
14.5.2 Payee Identification. 463
14.6 Bill Presentment E-Mail 464
14.6.1 Bill Presentment Mail Request <PRESMAILRQ>......... 465
14.6.2 Bill Presentment Mail Response <PRESMAILRS>. 465

11/23/98 OFX 1.5.1 Specification

14.6.3 Status Codes <PRESMAILTRNRS>. 466

14.6.4 Request <PRESMAILSYNCRQ> 467
14.6.5 Response <PRESMAILSYNCRS>. 468
14.7 Message Setsand Profile. 469
14.7.1 Message Setsand Messages. 469
14.7.2 Biller Directory Message Set Profile 473
14.7.3 Bill Delivery Message Set Profile 474
14.8 Bill Presentment Examples. oL 475
14.8.1 Find BillerExamples. i 475
14.8.2 Enrollment Examples 479
14.8.3 Activation Example 481
14.8.4 Bill Delivery Examples i 483
Appendix A Status Codest 495
Appendix B Change History i 501
BLIOFX1.0to1.0d. 501
B.1.1 Specification Changes by Chapter................... 501
B.1.2 General Specification Changes...................... 521
B.13DTDChanges ...t 521
B2OFX1.01t01.0.2 i 523
B.2.1 Specification Changes by Chapter................... 523
B.2.2 General SpecificationChanges. 529
B.23DTDChanges ... 529
B3OFX 1.0.2t0 1.5, .. 531
B.3.1 Specification Changes by Chapter................... 531
BAOFX1I5t0OFX 151 .. . 545
B.4.1 Specification Changes by Chapter................... 545
B42DTDChanges ... 552

OFX 1.5.1 Specification 11/23/98

Xi

Xii 11/23/98 OFX 1.5.1 Specification

CHAPTER 1 OVERVIEW

1.1 Introduction

Open Financial Exchange is a broad-based framework for exchanging financial data and

instructions between customers and their financial institutions. It allows institutions to connect

directly to their customers without requiring an intermediary.

INSTITUTIONS
CUSTOMERS N -
Financial Institutions
Consumers > Financial Advisors
Families 4 Government Agencies
Taxpayers Merchants and Businesses
Small Businesses Information Providers

Transaction Processors

Open Financial Exchange is an open specification that anyone can implement: any financial
institution, transaction processor, software developer, or other party. It uses widely accepted
open standards for data formatting (such as SGML), connectivity (such as TCP/IP and HTTP),
and security (such as SSL).

Open Financial Exchange defines the request and response messages used by each financial
service as well as the common framework and infrastructure to support the communication of
those messages. This specification does not describe any specific product implementation.

OFX 1.5.1 Specification 11/23/98

13

1.1.1 Design Principles

The following principles were used in designing Open Financial Exchange:

O Broad Range of Financial Activities — Open Financial Exchange provides support for a
broad range of financial activities. Open Financial Exchange 1.5.1 specifies the following
services:

0O Bank statement download

0 Credit card statement download

0 Funds transfers including recurring transfers

O Consumer payments, including recurring payments
0 Business payments, including recurring payments

O Brokerage and mutual fund statement download, including transaction history, current
holdings, and balances.

0 Bill presentment and payment

0 Broad Range of Financial Institutions — Open Financial Exchange supports communication
with a broad range of financial institutions (FlIs), including:

0 Banks

O Brokerage houses

O Merchants

O Processors

O Financial advisors

0 Government agencies

0 Broad Range of Front-End Applications — Open Financial Exchange supports a broad
range of front-end applications, including Web-based applications, covering all types of
financial activities running on all types of platforms.

0 Extensible — Open Financial Exchange has been designed to allow the easy addition of new
services. Future versions will include support for many new services.

O Open - This specification is publicly available. You can build client and server applications
using the Open Financial Exchange protocols independent of any specific technology,
product, or company.

0 Multiple Client Support — Open Financial Exchange allows a user to use multiple client
applications to access the same data at a financial institution. With the popularity of the World
Wide Web, customers are increasingly more likely to use multiple applications—either
desktop-based or Web-based—to perform financial activities. For example, a customer can
track personal finances at home with a desktop application and occasionally pay bills while at
work with a Web-based application. The use of data synchronization to support multiple
clients is a key innovation in Open Financial Exchange.

14 1.1 Introduction

Robust — Open Financial Exchange will be used for executing important financial
transactions and for communicating important financial information. Assuring users that
transactions are executed and information is correct is crucial. Open Financial Exchange
provides robust protocols for error recovery.

Secure — Open Financial Exchange provides a framework for building secure online financial
services. In Open Financial Exchange, security encompasses authentication of the parties
involved, as well as secrecy and integrity of the information being exchanged.

Batch & Interactive — The design of request and response messages in Open Financial
Exchange is for use in either batch or interactive style of communication. Open Financial
Exchange provides for applying a single authentication context to multiple requests in order
to reduce the overhead of user authentication.

International Support — Open Financial Exchange is designed to supply financial services
throughout the world. It supports multiple currencies, country-specific extensions, and
different forms of encoding such as UNICODE.

Platform Independent —Open Financial Exchange can be implemented on a wide variety of
front-end client devices, including those running Windows 3.1, Windows 95, Windows NT,
Macintosh, or UNIX. It also supports a wide variety of Web-based environments, including
those using HTML, Java, JavaScript, or ActiveX. Similarly on the back-end, Open Financial
Exchange can be implemented on a wide variety of server systems, including those running
UNIX, Windows NT, or OS/2.

Transport Independent — Open Financial Exchange is independent of the data
communication protocol used to transport the messages between the client and server
computers. Open Financial Exchange 1.0.2 and 1.5.1 use HTTP.

OFX 1.5.1 Specification 11/23/98 15

1.2 Open Financial Exchange at a Glance

The design of Open Financial Exchange is as a client and server system. An end-user uses a client
application to communicate with a server at a financial institution. The form of communication
is requests from the client to the server and responses from the server back to the client.

Open Financial Exchange uses the Internet Protocol (IP) suite to provide the communication
channel between a client and a server. IP protocols are the foundation of the public Internet and a
private network can also use them.

1.2.1 Data Transport

Clients use the HyperText Transport Protocol (HTTP) to communicate to an Open Financial
Exchange server. The World Wide Web throughout uses the same HTTP protocol. In principle, a
financial institution can use any off-the-shelf web server to implement its support for Open
Financial Exchange.

To communicate by means of Open Financial Exchange over the Internet, the client must
establish an Internet connection. This connection can be a dial-up Point-to-Point Protocol (PPP)
connection to an Internet Service Provider (ISP) or a connection over a local area network that
has a gateway to the Internet.

Clients use the HTTP POST command to send a request to the previously acquired Uniform
Resource Locator (URL) for the desired financial institution. The URL presumably identifies a
Common Gateway Interface (CGI) or other process on an Fl server that can accept Open
Financial Exchange requests and produce a response.

The POST identifies the data as being of type application/x-ofx. Use application/x-ofx as the
return type as well. Fill in other fields per the HTTP 1.0 spec. Here is a typical request:

POST http://ww. fi.com ofx.cgi HITP/ 1. OHTTP headers

User - Agent : MyApp 5.0
Cont ent - Type: application/x-of x
Cont ent - Lengt h: 1032

OFXHEADER: 100 OFX headers
DATA: OFXSGWVL

VERSI ON: 151

SECURI TY: TYPEL

ENCODI NG USASCI |

<OFX> OFX request
Open Financi al Exchange requests ...
</ OFX>

16 1.2 Open Financial Exchange at a Glance

A blank line defines the separation between the HTTP headers and the start of the Open
Financial Exchange headers. A blank line also separates the Open Financial Exchange headers
and the request. (See Chapter 2, “Structure” for more information about the Open Financial
Exchange headers.) A brief note here that a “blank line” means a carriage return and a linefeed
pair — CRLF.

The structure of a response is similar to the request, with the first line containing the standard
HTTP result, as shown next. The content length is given in bytes.

HTTP 1.0 200 K HTTP headers

Cont ent - Type: application/ x-of x
Content - Length: 8732

OFXHEADER: 100 OFX headers
DATA: OFXSGWVL

VERSI ON: 151

SECURI TY: TYPE1

ENCODI NG USASCI |

<OFX> OFX response
Open Financi al Exchange responses ...
</ OFX>

OFX 1.5.1 Specification 11/23/98

17

1.2.2 Request and Response Model

The basis for Open Financial Exchange is the request and response model. One or more requests
can be batched in a single file. This file typically includes a signon request and one or more
service-specific requests. An Fl server will process all of the requests and return a single response
file. This batch model lends itself to Internet transport as well as other off-line transports. Both
requests and responses are plain text files, formatted using a grammar based on Standard
Generalized Markup Language (SGML). Open Financial Exchange is syntactically similar to
HyperText Markup Language (HTML), featuring tags to identify and delimit the data. The use of
a tagged data format allows Open Financial Exchange to evolve over time while continuing to
support older clients and servers.

Here is a simplified example of an Open Financial Exchange request file. (This example does not
show the Open Financial Exchange headers and the indentation is only for readability.) For
complete details, see the more complete examples throughout this specification.

<OFX> <l-- Begin request data -->
<SI GNONMSGSRQV1>
<SONRQ> <l-- Begin sighon -->
<DTCLI ENT>19961029101000 <!-- Cct. 29, 1996, 10:10:00 am-->
<USERI D>123- 45- 6789 <!-- User ID (that is, SSN) -->
<USERPASS>MyPasswor d <l-- Password (SSL encrypts whole) -->
<LANGUAGE>ENG <l -- Language used for text -->
<FI > <!-- ID of receiving institution -->
<ORG>NCH <l-- Nane of ID owner -->
<FI D>1001 <l-- Actual ID-->
</ Fl >
<APPI D>MyApp
<APPVER>0500
</ SONRQ> <!-- End of signon -->

</ S GNONVBGSRQV1 >

<BANKMSGSRQV1>
<STMI'TRNRQ> <!-- First request in file -->
<TRNUI D>1001
<STMIRQ> <!-- Begin statenent request -->
<BANKACCTFROW> <!-- Identify the account -->
<BANKI D>121099999 <l-- Routing transit or other FI ID -->
<ACCTI D>999988 <l-- Account nunber -->
<ACCTTYPE>CHECKI NG <!-- Account type -->
</ BANKACCTFROW> <l-- End of account ID -->
<I NCTRAN> <l-- Begin include transaction -->
<I NCLUDE>Y <l-- Include transactions -->

18 1.2 Open Financial Exchange at a Glance

</ | NCTRAN> <l-- End of include transaction -->

</ STMTRQ> <l-- End of statenent request -->
</ STMITRNRQ> <l-- End of first request -->
</ BANKMSGSRQV1 >
</ OFX> <!-- End of request data -->

The response format follows a similar structure. Although a response such as a statement
response contains all of the details of each transaction, each element is identified using tags.

The key rule of Open Financial Exchange syntax is that each tag is either an element or an
aggregate. Data follows its element tag. An aggregate tag begins a compound tag sequence,
which must end with a matching tag; for example, <AGGREGATE> ... </AGGREGATE>.

The file sent by Open Financial Exchange does not require any white space between tags.

White space following a tag delimiter (>), following an element value, or preceding a tag
delimiter (<) should be ignored. White space within an element value (i.e. not preceding, not
following) is significant. If white space is desired preceding or following an element value, this is
achieved using the CDATA wrapper or, in version 2 message sets and Bill Presentment, the
 macro. If more than one white space element is needed, then multiple macros
should be utilized. See section 2.3.2.1.

1.3 OFX Versions

This document specifies two distinct versions of OFX clients and servers. Version 1.0.2 supports
any or all version 1 message sets except Bill Presentment. These message sets are defined by the
OFX 1.0.2 Document Type Definition (DTD), which is used for parsing. Applications that
conform to this version are referred to as 1.0.2 clients and 1.0.2 servers.

Version 1.5.1 supports all version 2 message sets, Bill Presentment, and all version 1 message
sets. These message sets are defined by the OFX 1.5.1 DTD. Applications that conform to this
version are referred to as 1.5.1 clients and 1.5.1 servers. The OFX 1.5.1 DTD fully incorporates the
OFX 1.0.2 message sets, so it can be used to support both 1.0.2 and 1.5.1 applications.

For a complete description of OFX message sets, see Section 2.4.5.3.

As of the publication of this document, only versions 1.0.2 and 1.5.1 of OFX are supported. Other,
previous versions are obsolete. For a list of changes between versions, see Appendix B, "Change

History."

OFX 1.5.1 Specification 11/23/98 19

1.4 Conventions

The conventions used in the tag descriptions include the following:

O

Required tags are in bold. Regular face indicates tags that are optional. Required means that a
client must always include the tag in a request, and a server must always include the tag in a
response.

Required tags occur once unless noted as one or more in the description, in which case the
specification allows multiple occurrences.

Optional tags occur once if present unless noted as zero or more in the description, in which
case the specification allows multiple occurrences.

A-n or N-n specify those values that take an alphanumeric or numeric type value, where n
indicates the maximum size.

Common value types, such as a dollar amount, are referenced by name. Chapter 3, "Common

Adqggregates, Elements, and Data Types" lists value types that are referenced by name.

In some aggregates, there are different tags used in different message set versions. In those
aggregates, there is a third column in the table, called Version. In that column, for any tags
that differ across message set versions, there is a description of the difference. For example,
many tags say “V2 only” to indicate that they are in message set version 2 only.

O Explanatory information is in italics.
Tag Version Description
<REQUIREDTAG> Required tag (1 or more)
<REQUIREDTAG2> Required tag that occurs only once
<OPTIONALTAG> Optional tag; this tag can occur multiple times (0 or more)
<SPECIFIC> Values are A, B, and C
<ALPHAVALUE> Takes an alphanumeric value up to 32 characters, A-32
<NEWTAG> V2 only Tag used only in version 2 of this message set
Explanatory text Hopefully useful information.

20

1.4 Conventions

CHAPTER 2 STRUCTURE

This chapter describes the basic structure of an Open Financial Exchange request and response.
Structure includes headers, basic syntax, and the Signon request and response. This chapter also
describes how Open Financial Exchange encodes external data, such as bit maps.

Open Financial Exchange data consists of some headers plus one Open Financial Exchange data
block. This block consists of a signon message and zero or more additional messages. When sent
over the Internet using HTTP, standard HTTP and multi-part MIME headers and formats
surround the Open Financial Exchange data. A simple file that contained only Open Financial
Exchange data would have the following form:

HTTP headers

M ME type application/ x-of x
Open Financi al Exchange headers
Open Financi al Exchange SGWL bl ock

A more complex file that contained additional Open Financial Exchange data would have this
form:
HTTP headers
M ME type mnul tipart/x-nixed-repl ace; boundary =--boundary- -
---boundary- - -
M ME type application/ x-of x

Open Financi al Exchange headers

Open Financi al Exchange SGWML bl ock

---boundary- - -
M ME type i mage/|jpeg
FI | ogo

Version 1.0.2 of the Open Financial Exchange specification did not specify how to properly
separate the various components of an OFX request. In particular, separation of the HTTP
headers, the MIME attachments, the OFX headers, the OFX header elements, and the OFX SGML
block.

OFX 1.0.2 clients used a mix of LF and CRLF constructs and OFX 1.0.2 servers handled either
linefeed (LF) or carriage return/line feed (CRLF), but not often both. In the future, it is expected
that 1.0.2 servers will be upgraded to handle both CRLF and LF.

In version 1.5 and later of the Open Financial Exchange specification, the behavior for both an
OFX client and an OFX server has been specified to encourage uniform usage of the
specification.

OFX 1.5.1 Specification 11/23/98 21

OFX 1.5.1 Client

A proper client should separate the components of an OFX request using a single CRLF between
each component. A proper request thus has the form:

HTTP headers

CRLF(s)

MIME type information

CRLF(s)

OFX header element 1

CRLF

OFX header element 2

CRLF

OFX header element n

CRLF(s)

OFX SGML Block

OFX 1.5.1 Server

An OFX 1.5.1 specification server should expect OFX request components and elements to be
separated by the appropriate number of CRLF characters. However, as per W3C
recommendations, an OFX 1.5.1 server should also accept just a LF as a separator. This behavior
is as per the recommendation of the World Wide Web Consortium (W3C). The W3C is the
worldwide standards body for web technology.

http:.//www.w3.0rg (W3C home page)

http://www.w3.0org/Protocols/HTTP/OIldClients.html(W3C recommendations)

The text has been included below for ease of reference:

22

Note: Server tolerance of bad clients.

Whilst it is seen appropriate for testing parsers to check full conformance to this
specification, it is recommended that operational parsers be tolerant of deviations.

In particular, lines should be regarded as terminated by the Line Feed, and the
preceding Carriage Return character ignored.

Any HTTP Header Field Name which is not recognized should be ignored in
operational parsers.

It is recommended that servers use URIs free of “variant” characters whose
representation differs in some of the national variant character sets, punctuation
characters, and spaces. This will make URIs easier to handle by humans when the need
(such as debugging, or transmission through non-hypertext systems) arises.

Copyright © 1992, W3C.

2.1 HTTP Headers

Data delivered by way of HTTP places the standard HTTP result code on the first line. HTTP
defines a number of status codes. Servers can return any standard HTTP result. However, Fls
should expect clients to collapse these codes into the following three cases:

Code
200

400s

500s

Meaning Action
OK The request was processed and a valid Open Financial Exchange result is
returned.

Bad request The request was invalid and was not processed. Clients will report an
internal error to the user.

Server error The server is unavailable. Clients should advise the user to retry shortly.

Note: The server must return code 400 for any problem that prevents it from
processing the request file. Processing problems include failures relating to security,
communication, parsing, or the Open Financial Exchange headers (for example, the
client requested an unsupported language). For content errors such as wrong
USERPASS or invalid account, the server must return a valid Open Financial
Exchange response along with code 200. If a communication time-out error occurs
while an OFX server and a back-end server are communicating to fill a request, then
the server MUST return code 500.

OFX 1.5.1 Specification 11/23/98 23

Open Financial Exchange requires the following HTTP standard headers:

Explanation

Content- application/ | The MIME type for Open Financial Exchange
type x-0fx

Content- length Length of the data after removing HTTP headers
length

When responding with multi-part MIME, the main type will be multi-part/x-mixed-replace;
one of the parts will use application/x-ofx.

2.2 Open Financial Exchange Headers

The contents of an Open Financial Exchange file consist of a simple set of headers followed by
contents defined by that header

The Open Financial Exchange headers are in a simple tag:value syntax and terminated by a blank
line. Open Financial Exchange always sends headers unencrypted, even if application-level
encryption is used for the remaining contents. The language and character set used for the
headers is the same as the preceding MIME headers.

The first entry will always be OFXHEADER with a version number. This entry identifies the
contents as an Open Financial Exchange file and provides the version number of the Open
Financial Exchange headers that follow (not the version number of the contents). For example:

OFXHEADER: 100
Open Financial Exchange headers can contain the following tags.

DATA: OFXSGW
VERSI ON: 151
SECURI TY:
ENCODI NG
CHARSET:
COVPRESSI ON:
OLDFI LEUI D:
NEWFI LEUI D

All OFX headers are required. NONE should be returned if client or server does not make use of
an individual tag, e.g., COWPRESSI ON: NONE, OLDFI LEUI D: NONE

A blank line follows the last header. Then (for type OFXSGML), the SGML-readable data begins
with the <OFX> tag.

24 2.2 Open Financial Exchange Headers

For information about each of the OFX headers, refer to the following sections.

2.2.1 OFXHEADER
OFXHEADER specifies the version number of the Open Financial Exchange headers.

The OFXHEADER value change its major number only if an existing client is unable to process
the new header. This can occur because of a complete syntax change in a header, or a significant
change in the semantics of an existing header tag.

The current version of the Open Financial Exchange headers is version 1.0 (OFXHEADER:100).

OFX 1.5.1 Specification 11/23/98 25

2.2.2 DATA
DATA specifies the content type, in this case OFXSGML.

The value of the DATA tag changes only when an entirely new syntax is introduced. In the case
of OFXSGML, a new syntax would have to be non-SGML compliant to warrant a new DATA
value. It is possible that there will be more than one syntax in use at the same time to meet
different needs.

2.2.3 VERSION

VERSION specifies the version number of the Document Type Definition (DTD) used for
parsing. The are currently two supported DTDs:

0 The OFX 1.0.2 DTD supports all version 1 message sets, except Bill Presentment. It can be
used to create and support OFX 1.0.2 clients and servers.

0 The OFX 1.5.1 DTD supports all version 2 message sets, Bill Presentment, and version 1
message sets. Because it supports all message sets, the OFX 1.5.1 DTD can be used to create
and support OFX 1.0.2 and/or OFX 1.5.1 clients and servers.

The current accepted values for VERSION are 102 and 151.

Note: VERSION provides the version number of the DTD. The message set
aggregates within the <OFX> block describes the version numbers of specific message
sets. See Section 2.4.5.3.

2.2.4 SECURITY

SECURITY defines the type of application-level security, if any, that is used for the <OFX> block.
The values for SECURITY can be NONE or TYPEL.

For more information about security, refer to Chapter 4, "Open Financial Exchange Security."

2.2.5 ENCODING and CHARSET

ENCODING defines the text encoding used for character data. The values for ENCODING can
be USASCII or UTF-8.

CHARSET defines the character set used for character data.

For more information about ENCODING and CHARSET, refer to Chapter 5, "International
Support.”

26 2.2 Open Financial Exchange Headers

2.2.6 COMPRESSION

A future version of the specification will define compression.

2.2.7 OLDFILEUID and NEWFILEUID

NEWFILEUID uniquely identifies this request file. The NEWFILEUID, which clients must send
with every request file and which servers must echo in the response, serves several purposes:

O Servers can use the NEWFILEUID to quickly identify duplicate request files.

0 Clients and servers can use NEWFILEUID in conjunction with OLDFILEUID for file-based
error recovery. For more information about using file-based error recovery or lite
synchronization, see Chapter 6, "Data Synchronization."

O Servers can use the NEWFILEUID to manage the session keys associated with Type 1
application-level security. For more information about security, refer to Chapter 4, "Open
Financial Exchange Security."

OLDFILEUID is used together with NEWFILEUID only when the client and server support file-
based error recovery. OLDFILEUID identifies the last request and response that was received
and processed by the client.

2.3 SGML Details

2.3.1 Compliance

SGML is the basis for Open Financial Exchange. A DTD formally defines the SGML wire format
for Open Financial Exchange. However, Open Financial Exchange is not completely SGML-
compliant because the specification allows unrecognized tags to be present. Clients and servers
must skip over the unrecognized tags. That is, if a client or server does not recognize <XYZ>, it
must ignhore the tag and its enclosed data. A fully compliant SGML parser would not validate a
document that contains tags that the DTD does not define.

Although SGML is the basis for the specification, and the specification is largely compliant with
SGML, do not assume Open Financial Exchange supports any SGML features not documented in
this specification.

2.3.2 Valid SGML Characters

Open Financial Exchange tags that require a value can be set to any sequence of SGML
characters. To be valid, a value must contain at least one character that is not a blank character. In
other words, a value cannot contain only white space.

OFX 1.5.1 Specification 11/23/98 27

2.3.2.1 Special Characters

For the purposes of Open Financial Exchange, a few characters must be handled as special
characters. To represent a special character, use the corresponding escape sequence.

Character Version Escape sequence
< (less than) <

> (greater than) >

& (ampersand) &

‘‘ (space) V2 only

Note: The space macro was not added until OFX 1.5. So when using a version 1
message set (excluding Bill Presentment), there may be both clients and servers that
can not process the syntax. In this case, you must prefix strings containing
space characters as the first or last characters with “<I[CDATA[”and suffix them with
“11>.” See Chapter 9, "Customer to FI Communication," for an example.

Note: Space characters in the middle of a value do not require use of the special
character macro. If a string value needs to contain space characters as the first or last
characters, that’s when this macro is needed.

For example, the string “AT&T” encodes “AT&T.”

Note: Escape sequences are not required when these special characters are used in
tag values that accept HTML-formatted strings (for instance, e-mail records). These
tags accept SGML-marked section syntax that hides the HTML from the Open
Financial Exchange parser. You must prefix the HTML-formatted strings with
“<I[CDATA[”and suffix them with “]]>.” Within these bounds, treat the above
characters literally without an escape. See Chapter 9, "Customer to Fl
Communication," for an example.

2.3.3 Comments Not Supported

For explanatory purposes, the examples in this specification contain comments. However, Open
Financial Exchange files cannot contain comments.

28 2.3 SGML Details

2.4 Open Financial Exchange SGML Structure

2.4.1 Overview
Open Financial Exchange hierarchically organizes request and response blocks:

Top Level <OFX>

Message Set and Version <XXXMsGSvn>
Synchroni zati on Wappers <XXXSYNCRQ>, <XXXSYNCRS>
Transacti on Wappers <XXXTRNRQ@, <XXXTRNRS>
Specific requests and responses

The following sections describe these levels.

2.4.2 Case Sensitivity

OFX requires upper case letters for element names and enumerated values. In the example
below, <SEVERITY> is an element with an enumerated value and <MESSAGE> is an element
with a value that is not enumerated.

<STATUS>

<CODE> 2000

<SEVERI TY> ERRCR

<MESSAGE> CGeneral Error
</ STATUS>

2.4.3 Top Level

An Open Financial Exchange request or response has the following top-level form:

Tag Description

<OFX> Opening tag

... Open Financial 0 or more transaction requests and responses inside appropriate message
Exchange requests or set aggregates

responses ...

</OFX> Closing tag for the Open Financial Exchange record

This chapter specifies the order of requests and responses.

A single file MUST contain only one OFX block.

OFX 1.5.1 Specification 11/23/98 29

2.4.4 Messages

A message is the unit of work in Open Financial Exchange. It refers to a request and response
pair, and the status codes associated with that response. For example, the message to download a
bank statement consists of the request <STMTRQ> and the response <STMTRS>. In addition,
with the exception of the signon message, each message includes a transaction wrapper. For
requests, the transaction wrapper adds a transaction unique ID <TRNUID>. For responses, the
transaction wrapper adds the same transaction unique ID <TRNUID>, plus a <STATUS>
aggregate.

For messages subject to synchronization (see Chapter 6, "Data Synchronization"), a third layer of
aggregates is also part of a message definition: a synchronization request and response. These
add a token and, in some cases, other information.

Open Financial Exchange uses the following naming conventions where the XXX message
includes:

O Basic request <XXXRQ> and response <XXXRS>
O Transaction wrapper <XXXTRNRQ> and <XXXTRNRS>
0 If needed, synchronization wrapper <XXXSYNCRQ> and <XXXSYNCRS>

Note: If a request/response is a sync request/response only, the transaction wrapper
and request which it wraps are omitted.

2.4.5 Message Sets and Version Control

Message sets are collections of messages. Generally they form all or part of what a user would
consider a service, something for which they might have signed up, such as “banking.” Message
sets are the basis of version control, routing, and security. They are also the basis for the required
ordering in Open Financial Exchange files.

Within the Open Financial Exchange block, Open Financial Exchange organizes messages by
message set. A message set can appear at most once within an Open Financial Exchange block.
All messages from a message set must be from the same version of that message set.

30 2.4 Open Financial Exchange SGML Structure

2.4.5.1 Message Set Aggregates

For each message set of XXX and version n, there are two aggregates, one for requests
<XXXMSGSRQVn>) and one for responses <XXXMSGSRSVn>. All of the messages from that
message set must be enclosed in the appropriate message set aggregate. In the following
example, the Open Financial Exchange block contains a signon request inside the signon
message set, and two statement requests and a transfer request inside the bank message set.

<OFX>
<SI GNONMSGSRQV1 > <!-- Signon nmessage set -->
<SONRQ> <l-- Signhon nessage -->
</ SONRQ>

</ SI GNONMSGSRQV1>

<BANKMSGSRQV1> <!'-- Banki ng nessage set -->
<STMITRNRQ> <l-- Statement request -->

</ STMITRNRQ>

<STMIT'TRNRQ> <l-- Another stnt request -->
</ STMITRNRQ>
<| NTRATRNRQ> <I-- Intrabank transfer request -->

</ | NTRATRNRQ>
</ BANKMSGSRQV1>
</ OFX>

OFX 1.5.1 Specification 11/23/98

2.4.5.2 Message Set Ordering

Message sets must appear in the following order:

O Signon

O Signup

0 Banking

0 Credit card statements
O Investment statements
0O Interbank funds transfers
0O Wire funds transfers

0 Payments

0 General e-mail

0 Investment security list
O Biller Directory

O Bill Delivery

0O FI Profile

The definition of each message set can further prescribe an order of its messages within that

message set.

For ordering purposes, versions of a message set are grouped with the message set. For instance,
Signon V2 would precede Banking V1, using the “natural” ordering above.

32

2.4 Open Financial Exchange SGML Structure

2.4.5.3 Message Set Version Numbers

Message sets have their own version numbers, which are distinct from the version numbers of
the Open Financial Exchange headers and the Document Type Definition (DTD) files.

Note: The version numbers of the Open Financial Exchange headers and the
Document Type Definition (DTD) files appear in the Open Financial Exchange
headers, before the <OFX> data block. For more information about the Open Financial
Exchange headers, see section 2.2. The current version number of the headers is
OFXHEADER: 100. The current version number of the DTDs is 102 or 151.

OFX 1.5.1 Specification 11/23/98

33

The following table lists each message set, along with its aggregate name and the DTD version

that support it.

Message Set Message Set Aggregate DTD Support
Signon <SIGNONMSGSETV1> 1.0.2,15.1
Signon <SIGNONMSGSETV2> 151
Signup <SIGNUPMSGSETV1> 1.0.2,15.1
Signup <SIGNUPMSGSETV2> 15.1
Banking <BANKMSGSETV1> 102,151
Banking <BANKMSGSETV2> 15.1
Credit Card Statements <CREDITCARDMSGSETV1> 102,151
Credit Card Statements <CREDITCARDMSGSETV2> 151
Investment Statements <INVSTMTMSGSETV1> 102,151
Investment Statements <INVSTMTMSGSETV?2> 151
Interbank Funds Transfers <INTERXFERMSGSETV1> 1.0.2,15.1
Interbank Funds Transfers | <INTERXFERMSGSETV2> 151

Wire Funds Transfers <WIREXFERMSGSETV1> 1.0.2,15.1
Wire Funds Transfers <WIREXFERMSGSETV2> 151
Payments <BILLPAYMSGSETV1> 102,151
Payments <BILLPAYMSGSETV2> 151
General e-mail <EMAILMSGSETV1> 102,151
General e-mail <EMAILMSGSETV2> 151
Investment security list <SECLISTMSGSETV1> 1.0.2,151
Investment security list <SECLISTMSGSETV2> 151
Biller directory <PRESDIRMSGSETV1> 151

Bill delivery <PRESDLVMSGSETV1> 151

Fl Profile <PROFMSGSETV1> 102,151
FI Profile <PROFMSGSETV2> 151

Note: For each message set that it is supporting, a financial institution must indicate
which version numbers of that message set it supports. The financial institution
includes the message set version number in the <MSGSETCORE> aggregate of the FlI
profile. For more information about the FI profile, refer to Chapter 7, "Fl Profile.”

34 2.4 Open Financial Exchange SGML Structure

2.4.6 Transactions

Other than the signon message, each request is made as a transaction. Transactions contain a
client-assigned globally-unique ID, optional client-supplied pass-back data, and the request
aggregate. A transaction similarly wraps each response. The response transaction returns the
client ID sent in the request, along with a status message, the pass-back data if present, and the
response aggregate. This technique allows a client to track responses against requests.

The <STATUS> aggregate, defined in Chapter 3, "Common Aggregates, Elements, and Data
Types," provides feedback on the processing of the request. If the <SEVERITY> of the status is
ERROR, the server provides the transaction response without the nested response aggregate.
Otherwise, the response must be complete even though some warning might have occurred.

Clients can send additional information in <CLTCOOKIE> that servers will return in the
response. This allows clients that do not maintain state, and thus do not save <TRNUID>s, to
cause some additional descriptive information to be present in the response. For example, a
client might identify a request as relating to a user or a spouse.

Starting with the message sets new to OFX 1.5 and later (e.g., the V2 message sets and the bill
presentation message sets), <CLTCOOKIE> must only be returned by the server in the initial
response to the client (and any crash recovery from that response). The <CLTCOOKIE> should
not be present in a sync response, except for those transactions whose requests were wrapped in
the sync request. This restriction is new for message set version 2 of all the message sets.

In some countries, some banks may require that a customer-supplied authorization number be
included to authenticate certain kinds of individual transactions such as payment requests. For
those banks, the <TAN> element passes this information to servers.

Note that if a <CLTCOOKIE> is given to an OFX server in a request, the OFX server is required
to return it. This return of the <CLTCOOKIE> will necessitate server-side storage of
<CLTCOOKIE> data. In the case of an OFX client getting a <CLTCOOKIE> that it didn’t send in
a request, the default behavior is to ignore it.

OFX 1.5.1 Specification 11/23/98 35

A typical request is as follows:

Tag Description
<XXXTRNRQ> Transaction-request aggregate
<TRNUID> Client-assigned globally-unique ID for this transaction, trnuid

<CLTCOOKIE> Data to be echoed in the transaction response, A-32

<TAN> Transaction authorization number; used in some countries with some types of
transactions. The FI Profile defines messages that require a <TAN>, A-80

Request Aggregate for the request
aggregate

</XXXTRNRQ>

A typical response is as follows:

Tag Version Description

<XXXTRNRS> Transaction-response aggregate
<TRNUID> Client-assigned globally-unique ID for this transaction, trnuid
<STATUS> Status aggregate
</STATUS>

<CLTCOOKIE> V2 change | Client-provided data, REQUIRED if provided in request, A-32
See note above regarding usage inside sync response.

Response Aggregate for the response
aggregate

</IXXXTRNRS>

List of status code values for the <CODE> element of <STATUS>:

Meaning

0 Success (INFO)
2000 General error (ERROR)
2022 Invalid TAN (ERROR)

36 2.4 Open Financial Exchange SGML Structure

2.5 The Signon Message Set

The Signon message set includes the signon message, USERPASS change message, and challenge
message, which must appear in that order. The <SIGNONMSGSRQV1> and
<SIGNONMSGSRSV1> (also V2) aggregates wrap the message.

2.5.1 Signon <SONRQ> <SONRS>

The signon record identifies and authenticates a user to an Fl. It also includes information about
the application making the request, because some services might be appropriate only for certain
clients. Every Open Financial Exchange block contains exactly one <SONRQ>. Every response
must contain exactly one <SONRS> record. Use of Open Financial Exchange presumes that Fls
authenticate each customer and then give the customer access to one or more accounts or
services. Authentication of a <SONRQ> is required, even when in Error Recovery. If passwords
are specific to individual services or accounts, a separate Open Financial Exchange request must
be made for each user ID or password required. This will not necessarily be in a manner visible
to the user. Note that some situations, such as joint accounts or business accounts, will have
multiple user IDs and multiple passwords that can access the same account.

Fls assign user IDs for the customer. Although the user ID may be the customer’s social security
number, the client must not make any assumptions about the syntax of the ID, add check-digits,
or do similar processing. Servers must accept user IDs, with or without punctuation.

To improve server efficiency in handling a series of Open Financial Exchange request files sent
over a short period of time, clients can request that a server return a <USERKEY> in the signon
response. If the server provides a user key, clients will send the <USERKEY> instead of the user
ID and password in subsequent sessions, until the <USERKEY> expires. This allows servers to
authenticate subsequent requests more quickly. Servers must accept a <GENUSERKEY> element
in a <SONRQ>. However, a server may decide <USERKEY> does not afford sufficient security
and may optionally not return a <USERKEY> in the <SONRS>.

The client returns <SESSCOOKIE> if the server sent one in a previous <SONRS>. Servers can use
the value of <SESSCOOKIE> to track client usage but cannot assume that all requests come from
a single client, nor can they deny service if they did not expect the returned cookie. Use of a
backup file, for example, could lead to an unexpected <SESSCOOKIE> value that nevertheless
should not stop a user from connecting.

A client may use an anonymous form of <USERID> and <USERPASS> on those occasions when
a server need not validate the <SONRQ>, i.e., <PROFRQ>and <ENROLLRQ>. The anonymous
<USERID> or <USERPASS> value is left aligned and padded with 0 to a length of 32 characters:
anonymous00000000000000000000000

Servers can request that a consumer change his or her password by returning status code 15000.
Servers should keep in mind that only one status code can be returned. If the current signon

OFX 1.5.1 Specification 11/23/98 37

response status should be 15500 (invalid ID or password), the request to change the password
must wait until an otherwise successful signon is achieved.

If the server returns any signon error, it must respond to all other requests in the same <OFX>
block with status code 15500. For example, if the server returns status code 15502 to the signon
request, it must return status code 15500 to all other requests in the same <OFX> block. The
server must return status code 15500 to all requests; it cannot simply ignore the requests.

An OFX 1.5.1 server has the option of allowing or disallowing “empty” signon transactions. In
the context of signon, “empty” means a simple signon without any other transaction (a sync,
statement download, etc.). If the OFX 1.5.1 server does not support empty signon, it should
return error 15506. If the OFX 1.5.1 server does support empty signon, it should process the
signon and return the appropriate error or success code.

For OFX 1.0.2 servers, it is optional whether or not to support error 15506. Since additional error
codes can be added to an OFX 1.0.2 server, it is suggested that logic to support error 15506 be
added to OFX 1.0.2 servers that wish to disallow empty signon transactions. Older clients should
remap unknown error codes to a general error.

38 2.5 The Signon Message Set

2.5.1.1 Sighon Request <SONRQ>

Unlike other requests, the signon request <SONRQ> does not appear within a transaction

wrapper.

Tag

<SONRQ>

<DTCLIENT>

User identification.
Either <USERID>
and <USERPASS> or
<USERKEY>, but not
both.

<USERID>

<USERPASS>

<ONETIMEPASS>

-0r-

<USERKEY>

<GENUSERKEY>

<LANGUAGE>

<COUNTRY>

Version

V2 only

V2 only

Description

Signon-request aggregate

Date and time of the request from the client computer, datetime

User identification string, A-32

User password on server, A-171

Note: The effective size of USERPASS is A-32. However, if Type 1

security is used, then the actual field length is A-171.

A special type of password that is used only once (in addition to
USERPASS) to authenticate a single OFX session, A-32

Note: The client can send this tag only if the <PWTYPE> value
returned by the server has the value of ONETIME or HWTOKEN
(see section 7.2.2).

Log in using previously authenticated context, A-64

Request server to return a USERKEY for future use, Boolean

Requested language for text responses, language

Specific country system used for the requests in this <OFX> block:
3-letter country code from 1SO/DIS-3166.

If this tag is not present, the country system is USA.
The following countries are currently supported in OFX:

OFX 1.5.1 Specification

11/23/98

39

Tag

<FI>

</FI>

<SESSCOOKIE>

<APPID>
<APPVER>

</SONRQ>

Version

Description

COUNTRY Country Name

BEL Belgium

CAN Canada

CHE Switzerland

DEU Germany

ESP Spain

FRA France

GBR Great Britain

ITA Italy

NLD Netherlands

USA United States of America

Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether a FI
aggregate should be used and if so, the appropriate values for it. If
the Fl aggregate is to be used, then the client should send it in every
request, and the server should return it in every response.

Session cookie value received in previous <SONRS>, not sent if first
login or if none sent by FI, A-1000

ID of client application, A-5
Version of client application, (6.00 encoded as 0600), N-4

40

2.5 The Signon Message Set

2.5.1.2 Sighon Response <SONRS>

Unlike other responses, the signon response <SONRS> does not appear within a transaction
wrapper.

Note: In several V2 message sets, the specific definition of a tag is dependent upon
the <COUNTRY> tag in <SONRS>. For example, when using the V2 version of the
Banking message set, BANKID of the BANKACCTFROM aggregate is Interpreted
depending on the VALUE of COUNTRY (see section 11.3.1). If a server wants to
prevent potential client ambiguity regarding the country system being used, the
server should require Signon Message Set V2. being used, the server should require
Signon Message Set V2.

Note: A client should use <DTPROFUP> and <DTACCTUP=> only when the service
provider that originated SONRS is the same provider that is specified by <SPNAME>
in the profile message set. A client can determine if the service provider is the same by
comparing the value of <SPNAME> in the appropriate message set with the value for
<SPNAME> in the profile message set.

Tag Version Description
<SONRS> Record-response aggregate

<STATUS> Status aggregate, see section 3.1.4. See list of possible code values
in section 2.5.1.3

</STATUS>

<DTSERVER> Date and time of the server response, datetime

<USERKEY> Use user key instead of USERID and USERPASS for subsequent
requests. TSKEYEXPIRE can limit lifetime. A-64

<TSKEYEXPIRE> Date and time that USERKEY expires, datetime

<LANGUAGE> Language used in text responses, language

<COUNTRY> V2 only Specific country system used for the requests: 3-letter country
code from ISO/DIS-3166.
If this tag is not present, the country system is USA.
Note: Where element behaviors are listed within this
specification as dependent upon the value of <COUNTRY>, the
reference is to this one in the <SONRS> aggregate. It is not to be
confused with the element <COUNTRY> that appears elsewhere
in OFX, associated with addresses.

<DTPROFUP> Date and time of last update to profile information for any service
supported by this FI (see Chapter 7, "FI Profile"), datetime

<DTACCTUP> Date and time of last update to account information (see Chapter
8, “Activation & Account Information”), datetime

OFX 1.5.1 Specification 11/23/98 41

Tag

<FI>

</FI>

<SESSCOOKIE>

</SONRS>

Version

Description
Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether an FI
aggregate should be used and, if so, the appropriate values for it.
If the FI aggregate is to be used, then the client should send it in
every request, and the server should return it in every response.

Session cookie that the client should return on the next
<SONRQ>,A-1000

42

2.5 The Signon Message Set

2.5.1.3 Status Codes

List of status code values for the <CODE> element of <STATUS>:

Value Meaning

0
2000
15000
15500
15501
15502
15505
15506
15507

Success (INFO)

General error (ERROR)

Must change USERPASS (INFO)

Signon invalid (ERROR); see section 2.5.1
Customer account already in use (ERROR)
USERPASS Lockout (ERROR)

Country system not supported by server (ERROR)
Empty signon transaction not supported (ERROR)

Signon invalid without supporting pin change request (ERROR)

OFX 1.5.1 Specification 11/23/98

43

2.5.1.4 Financial Institution ID <FI>

Some service providers support multiple Fls, and assign each Fl an ID. The signon allows clients
to pass this information along, so that providers know to which FI the user is signing on.

Tag Description
<FI> Fl-record aggregate

<ORG> Organization defining this FI name space, A-32

<FID> Financial Institution ID (unique within <ORG>), A-32
</FI>

2.5.2 USERPASS Change <PINCHRQ> <PINCHRS>

The signon sends a request to change a customer password as a separate request. The transaction
request <PINCHTRNRQ> aggregate contains <PINCHRQ>. Responses are placed inside
transaction responses <PINCHTRNRS>. Password changes pose a special problem for error
recovery. If the client does not receive a response, it does not know whether the password change
was successful or not. Open Financial Exchange recommends that servers accept either the old
password or the new password on the connection following the one containing a password
change. The password used becomes the new password.

2.5.2.1 <PINCHRQ>

A USERPASS change request changes the customer’s password for the specific realm associated
with the messages contained in the OFX block. Based on the properties of an OFX profile,
defined in Chapter 7, "FI Profile,” a single OFX block contains instructions related to a single
realm. The USERPASS change request thus changes the USERPASS for all message sets
associated with one realm. For more information about signon realms, see section 7.2.2.

Tag Description
<PINCHRQ> USERPASS-change-request aggregate
<USERID> User identification string. Often a social security number, but if so, does not

include any check digits, A-32
<NEWUSERPASS> New user password, A-171

Note: The effective size of NEWUSERPASS is A-32. However, if Type 1
security is used, then the actual field length is A-171.

</PINCHRQ>

44 2.5 The Signon Message Set

2.5.2.2 <PINCHRS>

Tag Description
<PINCHRS> USERPASS-change-response aggregate
<USERID> User identification string. Often a social security number, but if so, does not

include any check digits, A-32
<DTCHANGED> | Date and time the password was changed, datetime

</PINCHRS>

2.5.2.3 <CHALLENGERQ> <CHALLENGERS>

A challenge request is the first step in Type 1 application-level security. Essentially, it asks for
some random data from the server. The challenge response provides that server-generated
random data and is the second step in Type 1 security.

The challenge message is part of the signon message set and is not subject to data
synchronization.

A <CHALLENGERQ> is part of a <CHALLENGETRNRQ> transaction, a <CHALLENGERS>
part of a <CHALLENGETRNRS>.

Tag Description
<CHALLENGERQ> Opening tag for the challenge request.
<USERID> User identification string, A-32

<FICERTID> Optional server certificate ID. A-64

</CHALLENGERQ> | Closing tag for challenge request.

Tag Description

<CHALLENGERS> Opening tag for the challenge response.

<USERID> User identification string, A-32
<NONCE> Server-generated random data. A-16
<FICERTID> ID of server certificate used to encrypt. A-64

</CHALLENGERS> | Closing tag for challenge response.

When generating the <NONCE>, make sure the data is as unpredictable as possible. See RFC
1750 for recommendations.

OFX 1.5.1 Specification 11/23/98 45

The client includes <FICERTID> in the request if it already has the server’s certificate. If it’s
included and matches the server’s current certificate, the server may omit the actual certificate
from the response.

The server includes <FICERTID> in the response to identify the certificate in a separate MIME
part. Even if the certificate itself is not attached, <FICERTID> is still included in the response.

Status code values for the <CODE> element of <STATUS>:

Meaning

0 Success (INFO)
2000 General error (ERROR)
15504 Could not provide random data (ERROR)

2.5.2.4 Status Codes

Meaning

0 Success (INFO)
2000 General error (ERROR)
15503 Could not change USERPASS (ERROR)

46 2.5 The Signon Message Set

2.5.3 Signon Message Set Profile Information

A server must include the signon message set <SIGNONMSGSET> as part of the
<MSGSETLIST> aggregate in the FI profile, since every server must support signon requests.

The information that is part of the <MSGSETCORE> aggregate (for example, the URL and
security level) is used only when no other message sets are used. Otherwise, the other message
sets override the signon message set for the purposes of batching and routing. For example, if
bill payments are sent to a URL that is different from the one used for signon, the client uses the
URL specified in the bill payment message set <BILLPAYMSGSET>. For more information about
how clients batch and route messages, refer to section 7.1.3.

Tag Description
<SIGNONMSGSET> Signon-message-set-profile-information aggregate
<SIGNONMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"

</MSGSETCORE>
</SIGNONMSGSETV1>
<SIGNONMSGSETV2> Opening tag for V2 of the message set profile information

<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"

</MSGSETCORE>
</SIGNONMSGSETV2>

</SIGNONMSGSET>

OFX 1.5.1 Specification 11/23/98 47

2.5.4 Examples
User requests a password change:

<Pl NCHTRNRQ>
<TRNUI D>888
<Pl NCHRQ>
<USERI D>123456789
<NEWUSERPASS>5321
</ PI NCHRQ>
</ PI NCHTRNRQ>

The server responds with:

<Pl NCHTRNRS>

<TRNUI D>888
<STATUS>
<CODE>0
<SEVERI TY>I NFO
</ STATUS>
<Pl NCHRS>
<USERI D>123456789
</ Pl NCHRS>
</ PI NCHTRNRS>

2.6 External Data Support

Some data, such as binary data, cannot easily be sent within SGML. For these situations, the
specification defines a tag that references some external data. The way that clients pick up the
external data depends on the transport used. For the HTTP-based transport described in this
document, servers can send the data in one of two ways:

0 Send the same response, using multi-part MIME types to separate the response into the Open
Financial Exchange file and one or more external data files

O Client can make a separate HTTP get against the supplied URL, if it really needs the data
For example, to retrieve a logo, a <GETMIMERS> might answer a <GETMIMERQ> as follows:

<CGETM MERS>
<URL>https://ww. fi.com xxx/yyyl/zzz.jpg
</ GETM MERS>

If the file includes the same response using multi-part MIME, clients must have the local file,
22z.jpg.

48 2.6 External Data Support

2.7 Extensions to Open Financial Exchange

An organization that provides a customized client and server that communicate by means of
Open Financial Exchange might wish to add new requests and responses or even specific
elements to existing requests and responses. To ensure that each organization can extend the
specification without the risk of conflict, Open Financial Exchange defines a style of tag naming
that lets each organization have its own name space.

Organizations can register a specific tag name prefix. (The specific procedure or organization to
manage this registration will be detailed at a later time.) If an organization registers “ABC,” then
they can safely add new tags named <ABC.SOMETHING> without

0 Colliding with another party wishing to extend the specification
0 Confusing a client or server that does not support the extension

The extensions are not considered proprietary. An organization is free to publish their extensions
and encourage client and server implementers to support them.

All tag names that do not contain a period (.) are reserved for use in future versions of the Open
Financial Exchange specification.

OFX 1.5.1 Specification 11/23/98 49

50

2.7 Extensions to Open Financial Exchange

CHAPTER 3 COMMON AGGREGATES, ELEMENTS, AND
DATA TYPES

3.1 Common Aggregates

This section describes aggregates used in more than one service of Open Financial Exchange (for
example, investments and payments).

3.1.1 Identification of Financial Institutions and Accounts

Open Financial Exchange does not provide a universal space for identifying financial
institutions, accounts, or types of accounts. The way to identify an Fl and an account at that FI
depends on the service. For information about service-specific ID aggregates, see Chapter 11,
"Banking," Chapter 12, "Payments," and Chapter 13, "Investments."

3.1.2 Format of User-Supplied Numbers

Clients will not attempt to strip dashes or other punctuation from user-supplied numbers, such
as the <TAXID> in an enrollment request or the <XXXACCTTO> in a service-addition request.
Servers must be prepared to accept these numbers with or without punctuation.

OFX 1.5.1 Specification 11/23/98 51

3.1.3 Balance Records <BAL>

Several responses allow Fls to send an arbitrary set of balance information as part of a response,
for example a bank statement download. FIs might want to send information on outstanding
balances, payment dates, interest rates, and so forth. Balances can report the date the given
balance reflects in <DTASOF>.

Tag Description

<BAL> Balance-response aggregate
<NAME> Balance name, A-32
<DESC> Balance description, A-80
<BALTYPE> Balance type.

DOLLAR = dollar (value formatted DDDD.cc)

PERCENT = percentage (value formatted XXXX.YYYY)

NUMBER = number (value formatted as is)
<VALUE> Balance value.

Interpretation depends on <BALTYPE> field, amount
<DTASOF> Effective date of the given balance, datetime
<CURRENCY> If dollar formatting, can optionally include currency
</CURRENCY>

</BAL>
52

3.1 Common Aggregates

3.1.4 Error Reporting <STATUS>

To provide as much feedback as possible to clients and their users, Open Financial Exchange
defines a <STATUS> aggregate. The most important element is the code that identifies the error.
Each response defines the codes it uses. Codes 0 through 2999 have common meanings in all
Open Financial Exchange transactions. Codes from 3000 and up have meanings specific to each
transaction.

The last 10 error codes in each assigned range of 1000 is reserved for server-specific status codes.
For example, of the general status codes, 2990-2999 are reserved for status codes defined by the
server. Of the banking status codes, codes 10990-10999 are reserved for the server. If a client
receives a server-specific status code of <SEVERITY> ERROR that it does not know, it will
handle it as a general error 2000.

Tag Version Description

<STATUS> Error-reporting aggregate.
<CODE> Error code, N-6
<SEVERITY> Severity of the error:

INFO = Informational only

WARN = Some problem with the request occurred but a valid
response still present

ERROR = A problem severe enough that response could not
be made

<MESSAGE> V1only A textual explanation from the Fl. Note that clients will
generally have messages of their own for each error ID. Use
this tag only to provide more details or for the general errors.
A-255

<MESSAGE2> V2 only A textual explanation from the Fl. Note that clients will
generally have messages of their own for each error ID. Use
this tag only to provide more details or for the general errors.
A-2000

</STATUS>

OFX 1.5.1 Specification 11/23/98 53

For general errors, the server can respond with one of the following <CODE> values. However,
not all codes are possible in a specific context.

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2021 Unsupported version (ERROR)

15500 Signon error (ERROR); see section 2.5.1

Note: Clients will generally have error messages that are based on <CODE>.
Therefore, do not use <MESSAGE> to replace that text. Use <MESSAGE> only to
explain an error not well described by one of the defined codes, or to provide some
additional information.

3.2 Common Elements

This section defines elements used in several services of Open Financial Exchange. The format of
the value is either alphanumeric (A-n) or numeric (N-n) with a maximum length n; or as a named
type. Section 3.2.8 describes the named types.

3.2.1 Financial Institution Transaction ID <FITID>
Format: A-255

An Fl assigns an <FITID> to uniquely identify a financial transaction that can appear in an
account statement. Its primary purpose is to allow a client to detect duplicate responses. Open
Financial Exchange intends <FITID> for use in statement download applications, where every
transaction requires a unique ID; not just those that are client-originated or server-originated.

FITIDs must be unique within the scope of the requested transactions (that is, within an account)
but need not be sequential or even increasing. Clients should be aware that FITIDs are not
unique across Fls. If a client performs the same type of request within the same scope at two
different Fls, clients will need to use Fl + account + <FITID> as a unique key in a client database.

Note: Although the specification allows FITIDs of up to 255 alphanumeric characters,
client performance may significantly improve if servers use fewer characters. It is
recommended that servers use 32 characters or fewer.

Usage: Bank statement download, investment statement download

54 3.2 Common Elements

3.2.2 Server-Assigned ID <SRVRTID>, <SRVRTID2>

Format: A-10 for <SRVRTID>, used in V1 message sets; A-36 for <SRVRTID2>, used in V2 message
sets

A <SRVRTID> is a server-assigned ID for an object that is stored on the server. It should remain
constant throughout the lifetime of the object on the server. The client will consider the SRVRTID
as its “receipt” or confirmation and will use this ID in any subsequent requests to change, delete,
or inquire about this object.

Where the context allows, a server can use the same value for a given server object for both
<SRVRTID> and <FITID>, but the client will not know this. <SRVRTID>s must be unique only
within the scope of the requests and responses they apply to, such as an account number. Like
<FITID>, a <SRVRTID> is not unique across Fls and clients might need to use Fl + <SRVRTID> if
a client requires a unique key.

Usage: Payments, Banking

3.2.3 Client-Assigned Transaction UID <TRNUID>
Format: A-36

Open Financial Exchange uses <TRNUID>s to identify transactions within transaction wrappers
(SXXXTRNRQ>, </XXXTRNRQ>).

In most cases, clients originate <TRNUID>s. When a client originates a <TRNUID>, the value of
the <TRNUID> is always set to a unique identifier. Clients expect the server to return the same
<TRNUID> in the corresponding response and can use this <TRNUID> to match up requests
and responses. Servers can use <TRNUID>s to reject duplicate requests. Because multiple clients
might be generating requests to the same server, transaction IDs must be unique across clients.
Thus, <TRNUID> must be a globally unique ID.

In some cases, servers can originate a transaction that was not specifically requested by a client.
For instance, a client might set up a recurring payment model. Although the client originates the
payment model, the server originates the individual payments. Whenever the server originates a
transaction, the value of the <TRNUID> must be set to zero.

The Open Software Foundation Distributed Computing Environment standards specify a 36-
character hexadecimal encoding of a 128-bit number and an algorithm to generate it. Clients are
free to use their own algorithm, to use smaller <TRNUID>s, or to relax the unigqueness
requirements. However, it is RECOMMENDED that clients allow for the full 36 characters in
responses to work better with other clients.

Usage: All services

OFX 1.5.1 Specification 11/23/98 55

3.2.4 Token <TOKEN>, <TOKEN2>
Format: A-10 for <TOKEN>, used in V1 message sets; A-36 for <TOKEN2>, used in V2 message sets

Open Financial Exchange uses <TOKEN> as part of data synchronization requests to identify the
point in history that the client has already received data, and in responses to identify the server’s
current end of history. See Chapter 6, “Data Synchronization,” for more information.

<TOKEN> is unique within an FI and the scope of the synchronization request. For example, if
the synchronization request includes an account ID, the <TOKEN> needs to be unique only
within an account. Servers are free to use a <TOKEN> that is unique across the entire FI. Clients
must save separate <TOKEN=>s for each account, Fl, and type of synchronization request.

Usage: All synchronization requests and responses

3.2.5 Transaction Amount <TRNAMT>

Format: Amount

Open Financial Exchange uses <TRNAMT> in any request or response that reports the total
amount of an individual transaction.

Usage: Bank statement download, investment statement download, payments

3.2.6 Memo <MEMO>, <MEMO2>
Format: A-255 for <MEMO>, used in V1 message sets; A-390 for <MEMO2>, used in V2 message sets
A <MEMO> provides additional information about a transaction.

Usage: Bank statement download, investment statement download, payments, transfers

56 3.2 Common Elements

3.2.7 Date Start and Date End <DTSTART> <DTEND>

Format: Datetime

Clients use these tags in requests to indicate the range of response that is desired. Servers use
these tags in responses to let clients know what the FI was able to produce.

In requests, the following rules apply:

O If <DTSTART> is absent, the client is requesting all available history (up to the <DTEND>, if
specified). Otherwise, it indicates the inclusive date and time in history where the client
expects servers to start sending information.

0 If <DTEND> is absent, the client is requesting all available history (starting from
<DTSTART>, if specified). Otherwise, it indicates the exclusive date and time in history where
the client expects servers to stop sending information.

In responses, the following rules apply:

O <DTSTART> is the date and time where the server began looking for information, not
necessarily the date of the earliest returned information. If the response <DTSTART> is later
than the requested <DTSTART>, clients can infer that the user has not signed on frequently
enough to ensure that the client has retrieved all information. If the user has been calling
frequently enough, <DTSTART> in the response will match <DTSTART> in the request.

0 <DTEND> is the date and time that, if used by the client as the next requested <DTSTART>, it
would pick up exactly where the current response left off. It is the exclusive date and time in
history where the server stopped looking for information, based on the request <DTEND>
rules.

In all cases, servers are REQUIRED to use a “system add datetime” as the basis for deciding
which details match the requested date range. For example, if an FI posts a transaction dated Jan
3 to a user’s account on Jan 5, and a client connects on Jan 4 and again on Jan 6, the server is
REQUIRED to return that Jan 3-dated transaction when the client calls on Jan 6.

Usage: Bank statement download, investment statement download

OFX 1.5.1 Specification 11/23/98 57

3.2.8 Common Data Types

3.2.8.1 Dates, Times, and Time Zones
There is one format for representing dates, times, and time zones. The complete form is:

YYYYMMDDHHMMSS. XXX [gmt offset:tz name]

3.2.8.2 Date and Datetime

Tags specified as type date or datetime and generally starting with the letters “DT” accept a fully
formatted date-time-timezone string. For example, “19961005132200.124[-5:EST]” represents
October 5, 1996, at 1:22 and 124 milliseconds p.m., in Eastern Standard Time. This is the same as
6:22 p.m. Greenwich Mean Time (GMT).

Date and datetime also accept values with fields omitted from the right. They assume the
following defaults if a field is missing:

Specified date or datetime Assumed defaults

YYYYMMDD 12:00 AM (the start of the day), GMT
YYYYMMDDHHMMSS GMT
YYYYMMDDHHMMSS. XXX | GMT

Note that times zones are specified by an offset and optionally, a time zone name. The offset
defines the time zone. Valid offset values are in the range from -12 to +12 for whole number
offsets. Formatting is +12.00 to -12.00 for fractional offsets, plus sign may be omitted.

Take care when specifying an ending date without a time. If the last transaction returned for a
bank statement download was Jan 5 1996 10:46 a.m. and if the <DTEND> was given as just Jan 5,
the transactions on Jan 5 would be resent. If results are available only daily, then just using dates
and not times will work correctly.

Note: Open Financial Exchange does not require servers or clients to use the full
precision specified. However, they are REQUIRED to accept any of these forms
without complaint.

Some services extend the general notion of a date by adding special values, such as “TODAY.”
These special values are called “smart dates.” Specific requests indicate when to use these extra
values, and list the tag as having a special data type.

58 3.2 Common Elements

3.2.8.3 Time

Tags specified as type time and generally ending with the letters “TM” accept times in the
following format:

HHMMSS. XXX[gmt offset:tz name]

The milliseconds and time zone are still optional, and default to GMT.

3.2.8.4 Time Zone Issues

Several issues arise when a customer and Fl are not in the same time zone, or when a customer
moves a computer into new time zones. In addition, it is generally unsafe to assume that
computer users have correctly set their time or time zone.

Although most transactions are not sensitive to the exact time, they often are sensitive to the
date. In some cases, time zone errors lead to actions occurring on a different date than intended
by the customer. For this reason, servers should always use a complete local time plus GMT
offset in any datetime values in a response. If a customer’s request is for 5 p.m. EST, and a server
in Europe responds with 1 a.m. MET the next day, a smart client can choose to warn the customer
about the date shift.

Clients that maintain local state, especially of long-lived server objects, should be careful how
they store datetime values. If a customer initiates a repeating transaction for 5 p.m. EST, then
moves to a new time zone, the customer might have intended that the transaction remain 5 p.m.
in the new local time, requiring a change request to be sent to the server. If, however, the
customer intended it to remain fixed in server time, this would require a change in the local time
stored in the client.

Client software that doesn’t know the current local time zone for the user, or client proxies that
don’t know the current local time zone of their end users, should maintain and display the
datetime value in the time zone indicated by the originator of the value and explicitly marked
with that time zone. As an example, consider <DTPMTDUE> in section 11.5.4.2. If the biller gave
a due date of 23:59pm EST on Dec 29, 1997, this is best displayed as 23:59pm EST rather than
rendered in local time if there is any doubt at all as to the current local time zone of the end user
looking at the due date.

OFX 1.5.1 Specification 11/23/98 59

3.2.9 Amounts, Prices, and Quantities

3.2.9.1 Basic Format
Format: A-32

This section describes the format of numerical values used for amounts, prices, and quantities. In
all cases, a numerical value that does not contain a decimal point has an implied decimal point at
the end of the value. For example, a numerical value of “550” is equivalent to “550.” Trailing and
leading spaces should be stripped. Number format uses a leading sign. Negative number format
uses a minus sign (-). Positive number format uses a plus sign (+). The plus sign is implied for all
amounts and can be omitted.

The following types are defined to have a maximum of 32 alphanumeric characters, including
digits and punctuation. However, clients and servers may have specific limits for the maximum
number of digits to the left or right of a decimal point. If a server cannot support a client request
due to the size or precision of a number, the server should return status code 2012.

Amount: Amounts that do not represent whole numbers (for example, 540.32), must include a
decimal point or comma to indicate the start of the fractional amount. Amounts should not
include any punctuation separating thousands, millions, and so forth. The maximum value
accepted depends on the client.

Quantity: Use decimal notation.
Unitprice: Use decimal notation. Unless specifically noted, prices should always be positive.
Rate: Use decimal notation, with the rate specified out of 100%. For example, 5.2 is 5.2%.

Some services define special values, such as INFLATION, which you can use instead of a
designated value. Open Financial Exchange refers to these as “smart types,” and identifies them
in the specification.

3.2.9.2 Positive and Negative Signs

Most OFX transaction aggregates describe the flow of funds. Amounts in transactions which
clearly describe the flow of funds should normally be positive. For example, investment buys
and sells, bank statement credits and debits should be positive.

Servers should sign amounts from the perspective of the user in cases where the flow of funds
cannot be determined from the transaction aggregate alone. For example, interest amounts can
be either positive or negative, depending on whether the interest is earned or paid. Servers
should also sign amounts in cases of corrections to transaction. For example, a correction to an
Investment Buy Mutual Fund transaction, BUYMF, would contain negatively signed UNITS.

60 3.2 Common Elements

3.2.10 Language

Language identifies the human-readable language used for such things as status messages and e-
mail. Language is specified as a three-letter code based on I1SO-639.

3.2.11 Other Basic Data Types

Boolean: Y = yes or true, N = no or false.

currsymbol: A three-letter code that identifies the currency used for a request or response. The
currency codes are based on 1SO-4217. For more information about currencies, refer to section
5.2.

URL.: String form of a World Wide Web Uniform Resource Location. It should be fully qualified
including protocol, host, and path. A-255.

URL2: URL2 is used in V2 message sets to handle URLs that might contain longer server names,
security tokens and context data. String form of a World Wide Web Uniform Resource Location.
It should be fully qualified including protocol, host, and path. A-1024.

OFX 1.5.1 Specification 11/23/98 61

62

3.2 Common Elements

CHAPTER 4 OFX SECURITY

OFX provides several options for ensuring the security of customer transactions. This chapter
describes the OFX security framework, security goals, types of security, and financial institution
(FI) responsibilities.

4.1 Security Concepts in OFX

4.1.1 Architecture

OFX security applies to the communication paths between a client and the profile server, a client
and the Web server, and, when the OFX server is separate from the Web server, a client and the
OFX server. The diagram below illustrates the initial order in which these communications occur,
assuming that the client already has the URL for the FI profile server.

The bootstrap process for a client is:

0 From the FI Profile Server, the client gets the URL of the FI Web server, so that it can retrieve a
particular message set.

O The client sends an OFX request to the FI Web Server URL, from which it is forwarded to the
OFX Server.

0 The OFX Server sends back a response to the client via the Web Server.

| PROFILE
FI Profile | SERVER
—| including !
Web Server URL | |
|
|
|

CLIENT | mmmm o m oo m oo

OFX 1.5.1 Specification 11/23/98 63

4.1.2 Security Goals

The main goals of OFX security are:

O Privacy: Only the intended recipient can read a message. Encryption is a technique often used
to ensure privacy.

O Authentication: The recipient of a message can verify the identity of the sender. In OFX,
passwords allow an FI to authenticate a client, and certificates allow a client to authenticate a
server.

O Integrity: A message cannot be altered after it is created A cryptographic hash is often used to
assist integrity verification.

OFX specifies the minimum security required for Internet transactions and provides several
security options, based on existing standards. Through its choice of security techniques and
related options, an FI can achieve privacy, authentication, and integrity with varying degrees of
assurance. For example, there are many kinds of encryption algorithms, most of which can be
strengthened or weakened by changing the key size.

4.1.3 Security Standards

Several standards underlie Type 1 security:

0 Certificates (X.509 v3) are used to identify and authenticate servers, and to convey their public
keys.

0 PKCS #1 block type 2 is the encryption format specified by the recipe (See Section 4.2.2.4.3).
0 RSA is the encryption algorithm.

4.1.3.1 Certificates and Certification Authorities

A certificate is a digitally signed document that binds a public key to an identity. It contains a
public key that identifies information such as the name of the person or organization to whom
the key belongs, an expiration date, a unique serial number, and additional descriptive
information.

A certificate is useful for authentication because it is signed by a trusted third-party. The assures
the verifier that the certificate has not been changed since it was signed. The entity which signs
certificates is called a certification authority, or CA. A CA acts somewhat like a notary public: the
reader of a document stamped by a notary public knows that the notary has checked the identity
of the person who originated the document. By digitally signing someone’s identity and public
key, the CA affirms that the two go together.

If the client and server do not share a common CA, the client cannot validate the server’s
certificate. For this reason, OFX specifies a number of trusted CAs that all clients must accept and
all servers must use.

64 4.1 Security Concepts in OFX

Certificates are used in Type 1 security, as well as channel-level security through SSL. The format
for these is defined by X.509 version 3. For more information, refer to ITU-T Rec. X.509, ISO/IEC
9594-8.

4.1.3.2 PKCS #1

The acronym, PKCS, stands for “Public Key Cryptography Standards,” a set of standards
developed by a consortium and hosted by RSA. PKCS #1 is the RSA Encryption Standard, the
rules for using RSA public key encryption. For the complete syntax of the PKCS #1 standard,
refer to “Public-Key Cryptography Standards (PKCS)” published by RSA Data Security, Inc. at
http:.//www.rsa.com/.

4.1.4 Fl Responsibilities

OFX is designed with the understanding that there must be a security policy in place at each
supporting financial institution. That policy must clearly delineate how customer data is
secured, and how transactions are managed such that all parties to the transaction are protected
according to accepted and recognized best common practices.

The decision regarding which users may perform a given operation on a given account must be
determined by the financial institution. For example, is the specified user authorized to perform
a transfer from the specified account? The financial institution must also determine whether the
user has exceeded allowed limits on withdrawals, whether the activity on this account is unusual
given past history, and other context-sensitive issues.

Although OFX provides many security options, an FI must support a minimal level of security.
To ensure the proper security configuration, an FI must follow the steps outlined below.

1. Obtain one certificate for the profile server. This certificate must be rooted in one of the
approved Certification Authorities (CAs). Establish appropriate safeguards for this certificate
and its private key.

2. Obtain a certificate, rooted in an acceptable CA, for each OFX server, whether it is operated
by the FI or by a third party.

3. Decide whether to use Type 1 application-level security for any message sets. For each
message set to be secured by Type 1, obtain a certificate.

Type 1 security can be used on any message set, except for the Profile message set.

There are a number of other security issues beyond OFX proper, especially those relating to the
Internet and network engineering. These issues are beyond the scope of this document. Fls are
advised to conduct a complete security review of all servers associated with OFX.

OFX 1.5.1 Specification 11/23/98 65

4.1.5 Security Levels: Channel vs. Application

With OFX, security can be applied at two different levels in the message exchange process.

O

Channel level: Generally transparent to a client or server, channel-level security is built into
the communication process, protecting messages between two ends of the “pipe.” To secure
messages during HTTP transport, client and server applications use the Secure Sockets Layer
(SSL) protocol. SSL transparently protects messages exchanged between the client and the
destination Web server. SSL authenticates the destination Web server using the Web server’s
certificate. Additionally, it provides privacy via encryption, and SSL-record integrity, i.e. the
block of data sent in each transmission cannot be altered without detection.

Application level: Transparent to and independent of the transport process, application-level
security protects the user password sent from the client application all the way to the server
application that handles the OFX messages. The server application typically resides beyond
the destination Web server, secured behind an Internet firewall. Application-level security
requires channel-level security.

The following diagram illustrates how channel-level and application-level security relate. The
diagram shows the path of a request from the client to the server when application-level
encryption is used.

Passwords are encrypted by the The Web server removes the
client application and by the S encryption and forwards
S Protocol the encrypted password and
plaintext OF X data

SSL Encryption

OFX Data OFX Data
CLIENT Encrypted WEB Encrypted | OFX
Password SERVER Password | SERVER

Channel-level security is sufficient for most message sets, provided that the network architecture
at the destination is adequately secure; however, application-level password encryption can
allow a more flexible back-end architecture with a high level of security.

66 4.1 Security Concepts in OFX

4.2 Security Implementation in OFX

4.2.1 Channel-Level Security

4.2.1.1 Specification in FI Profile

For each message set listed in the FI profile response, the <MSGSETCORE> aggregate describes
the channel-level security required for that message set.

The <TRANSPSEC> element defines whether or not channel-level security is required. It can
have one of the following values:

Description
N Do not use any channel-level security
Y Use channel-level security

All currently defined message sets require channel-level security.

4.2.1.2 SSL Protocol

Secure Sockets Layer (SSL) is a cryptographic protocol commonly used for channel-level security
on the Internet. Central to the security of SSL is the server certificate. This certificate assures clients
that the server is who it claims to be. It contains the public key of the server, which the client uses
to encrypt the session keys it generates as part of each connection.

All of this function is available without significant software development on either the client or
server side; however, the client and server must be configured to use appropriate encryption
algorithms (CipherSuites). In addition, clients and servers must share a trusted root certificate, or
the client will not be able to validate the server’s certificate.

Note: Although SSL supports client-side certificates to allow a server to authenticate a
client, OFX does not require them at this time. To identify and authenticate a customer,
servers should use the information provided in the signon request <SONRQ>.

Setting the <TRANSPSEC> element to Y means that the client must use SSL v3 or higher.

OFX 1.5.1 Specification 11/23/98 67

4.2.1.3 Trusted Certificate Authorities

Both channel-level and application-level security rely on clients and servers having at least one
trusted certification authority (CA) in common. To ensure that clients can test the validity of a

certificate, servers must have their certificates signed by an approved OFX CAL Clients are
assumed to have access to this trusted CA.

4.2.1.4 CipherSuites

The following SSL CipherSuites are approved for use with OFX:
0 SSL_RSA_WITH_RC4 128 SHA

0 SSL_RSA WITH_IDEA_CBC_SHA

0 SSL_RSA_WITH_DES CBC_SHA

0 SSL_RSA WITH_3DES EDE_CBC_SHA

0 SSL_DH_DSS WITH_DES CBC_SHA

0 SSL_DH_DSS WITH_3DES_EDE_CBC_SHA
0 SSL_DH_RSA_WITH_DES_CBC_SHA

0 SSL_DH_RSA_WITH_3DES EDE_CBC_SHA
0 SSL_DHE_DSS_WITH_DES_CBC_SHA

0 SSL_DHE_DSS WITH_3DES_EDE_CBC_SHA
0 SSL_DHE_RSA WITH_DES CBC_SHA

0 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

Other CipherSuites are not approved.

4.2.1.5 Key Size

Signing keys must be either RSA with a minimum 1024-bit modulus, or DSS with a 1024-bit
modulus.

Server RSA keys and Diffie-Hellman keys must both have a minimum 1024-bit modulus. The
Diffie-Hellman base must be primitive.

1. Approved OFX CAs will be identified at a later date.

68 4.2 Security Implementation in OFX

4.2.2 Application-Level Security

4.2.2.1 Specification in Fl Profile

For each message set listed in the FI profile response, the <MSGSETCORE> aggregate describes
the security required for that message set.

The <OFXSEC> element defines the type of application-level security required for the message
set. <OFXSEC> can have one of the following values, which also are used in the SECURITY
element of the OFX headers:

Description
NONE Do not use any application-level security
TYPE1 Use Type 1 application-level security

Application-level security requires channel-level security.

4.2.2.2 Type 1 Protocol Overview

The goal of the Type 1 protocol is to protect the user password all the way to the destination OFX
server. In the absence of client certificates, this password is the primary vehicle for client
authentication and is therefore worthy of special consideration.

Type 1 requires channel-level security, i.e. SSL. Though the password is well protected by SSL
alone in the client to Web server connection, the server-side network architecture may render the
password less secure while it is in transit between the Web and OFX servers. With Type 1, the
user password is not decrypted until the request reaches the OFX server.

Type 1 applies only to the request part of a message; the server response is unaffected.

A simple approach would be to deliver the server’s Type 1 certificate in the profile and use it to
encrypt the password, but that would permit a replay attack. An attacker could capture a
transaction, including encrypted password, and replay it to the server. It wouldn’t matter that
the password remained unknown.

To prevent the replay attack, the server introduces some random data to the process, data which is
unpredictably different for each transmission. The client asks for the random data with a
challenge request. The server sends it, along with its Type 1 certificate, in the challenge response.
The client then uses that random data in the encryption process, thereby assuring the server that
the client response is associated with this and only this interaction.

OFX 1.5.1 Specification 11/23/98 69

The following diagram illustrates:

—| Challenge reguest |—’

Challengeresponse | |
w/ random data

WEB OFX
CLIENT SERVER SERVER

OFX request w/
encrypted password

‘—| OFX response |—

4.2.2.3 Type 1 Protocol Notation

In this section, the expression, C = E5 (M), means that plain text M is encrypted either
symmetrically or asymmetrically with key A into ciphertext C. The expression, M = D, (C)

signifies the inverse operation (decryption), in which ciphertext C is decrypted into plain text M
using key A. If C was encrypted asymmetrically, then A in the latter case is understood to be the
private component of the key. The expression, A | | B, indicates that B is concatenated to A.

4.2.2.4 Type 1 Protocol Implementation

Type 1 application-level security provides additional password secrecy. These are the steps for
conducting a Type 1 transaction (unless otherwise noted, the term “Server” in this section refers
to the Financial Institution Server):

1. Client obtains the Server’s profile from the Profile Server (see Chapter 7, "FI Profile")

2. Client establishes an SSL connection with the Server (see Section 4.2.1)

3. Client sends <CHALLENGERQ> to Server (see Section 4.2.2.4.1)

4. Server sends <CHALLENGERS> which contains a nonce and the Server’s Type 1 certificate
(see Section 4.2.2.4.2)

5. Client builds a transaction request and sends it to the Server (see Section 4.2.2.4.3)

6. Server parses the request, verifying the user password, and either rejects or processes the
transaction (see Section 4.2.2.4.4)

70 4.2 Security Implementation in OFX

The following table lists data elements used in the Type 1 protocol:

Field | Type Description

BT octet, length 1 Block Type byte.
BT = 0x02

CT1 octet string, length 128 Ciphertext: the PKCS #1 RSA encryption of EB with KS.
CTl= EKS(EB)

CT2 printable ASCII, length 171 Encoded Ciphertext: the RADIX-64 encoding of CT1
(see RFC 1113, §84.3.2.4 and §4.3.2.5).
CT2 = RADIX64(CT1)

D octet string, length 68 Data: the user data to be encrypted.
D=NCI]IPIIT

EB octet string, length 128 Encryption Block: the formatted plain text block, ready
for encryption.
EB=0x00 || BT | PS]]O0x00]]D

KS RSA key, modulus length 1,024 bits Server’s Type 1 RSA key

NC octet string, length 16 Client Nonce: string of random octets generated by the
Client

NS octet string, length 16 Server Nonce: string of random octets generated by the
Server

P printable ASCII, null-padded, length | Password: shared by the Client and Financial

32 Institution, null-padded on the right

PS octet string, length 57 Padding String: each octet is pseudo-random and non-
zero

T octet string, length 20 Authentication Token.
T=SHAL(NS || P] NC)

OFX 1.5.1 Specification

11/23/98 71

struct {

unsi gned char nc[16];
unsi gned char p[32];
unsi gned char t[20];

} D

struct {
unsi gned char null1 = 0x00;
unsi gned char bt = 0x02;
unsi gned char ps[57];
unsi gned char null 2 = 0x00;
struct D d;

} EB;

4.2.2.4.1 Challenge request

Client sends a <CHALLENGERQ> to the Server.

4.2.2.4.2 Challenge response

Server sends a <CHALLENGERS> to the client. This response contains the Server’s Type 1
certificate and NS.

4.2.2.4.3 Building the OFX Request

1. Client generates 16 random octets and places them in NC (see RFC 1750 for
recommendations on entropy generation)

2. Client obtains the User’s password (P)
3. Client computes T=SHAL(NS || P |] NC)

4. Client generates 57 pseudo-random, non-zero octets and places them in PS (NC may be used
to seed the pseudo-random number generator)

5. ClientsetsD=NC]|PI]IT
6. ClientsetsEB=0x00 || BT PS]] 0x00]| D

7. Client RSA-encrypts EB using the Server’s Type 1 public key (obtained from the Server’s
Type 1 certificate): CT1 = Exs(EB) (see PKCS #1, §§8.2-8.4)

8. Client encodes the ciphertext for transport: CT2 = RADIX64(CT1). See RFC 1113, §4.3.2.4 and
84.3.2.5. This is a standard encoding method supported by RSA’s Bsafe library and others.

9. Client constructs the body of its OFX request
10. Client copies CT2 to the <USERPASS> field of the OFX <SONRQ>
11. Client sends the complete OFX request to the Server

In <PINCHRQ>, the steps are identical, except that in step 2, P is set to <NEWUSERPASS> and
in step 10, CT2 is copied to the <NEWUSERPASS> field of the <PINCHRQ>.

72 4.2 Security Implementation in OFX

The diagram below illustrates the creation of CT2.

Legend NS P NC
16 bytes 32 bytes 16 bytes
SHA-1 hash
concatenation

RSA encryption with Server’'s

HEOO®

public key

NC P T
16 bytes 32 bytes 20 bytes
RADIX-64 encoding
0x00 BT PS 0x00 D
1 byte 1 byte 57 bytes 1 byte 68 bytes
EB CT1 CT2
128 bytes 128 bytes 171 bytes

OFX 1.5.1 Specification

11/23/98

73

4.2.2.4.4 Parsing the OFX Request

1. Server reads the <SECURITY> field in the OFX header to ascertain whether Type 1
processing should be used on this message. If Type 1 is not used, skip to step 6.

2. Server extracts CT2 from the <USERPASS> field of the OFX <SONRQ> and removes the
encoding to obtain CT1 (see RFC 1113, §4.3.2.4 and §4.3.2.5)

3. Server decrypts CT1 to obtain EB: EB = Dkg(CT1) (see PKCS #1, 89)

4. Server extracts D from EB, then extracts NC, P, and T from D

5. Server looks up the Client’s password in its database, and computes SHAL(NS || P | | NC).
If the result does not match T, Server terminates the session and reports the error to the client

6. Server processes the request and returns confirmation to the Client
IN<PINCHRQ>,thestepsareidenticalexceptthatinstep2,CT2isobtainedfromthe<NEWUSERPASS>

field of the <PINCHRQ> and in step 5, the server does not look up the extracted new password
in a database.

74 4.2 Security Implementation in OFX

CHAPTER 5 INTERNATIONAL SUPPORT

5.1 Language and Encoding

Most of the content in OFX is language-neutral. However, some error messages, balance
descriptions, and similar tags contain text meant to appear to the financial institution customers.
There are also cases, such as e-mail records, where customers need to send text in other
languages. To support worldwide languages, OFX must identify the basic text encoding,
character set, and language.

The OFX headers specify the encoding and character set, as described in Chapter 2, "Structure."
Current encoding values are USASCII and UTF-8. For USASCII, character set values are code
pages. UTF-8 ignores the character set per se although it still requires the syntax. UTF-8 is a form
of UNICODE defined in International ISO/IEC 10646-1, amendment 2. Servers must respond
with the encoding and character set requested by the client.

Clients identify the language in the signon request. OF X specifies languages by three-letter codes
as defined in 1SO-639. Servers report their supported languages in the profile (see Chapter 7, "Fl
Profile™). If a server cannot support the language requested by the client, it must return an error
and not process the rest of the transactions.

5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>

In each transaction involving amounts, responses include a default currency identification,
<CURDEF>. The values are based on the ISO-4217 three-letter currency identifiers.

Within each transaction, specific parts of the response might need to report a different currency.
Where appropriate, aggregates include an optional <CURRENCT76Y> aggregate. The scope of a
<CURRENCY> aggregate is everything within the same aggregate that the <CURRENCY>
aggregate appears in, including nested aggregates, unless overridden by a nested
<CURRENCY> aggregate. For example, specifying a <CURRENCY> aggregate in an investment
statement detail means that the unit price, transaction total, commission, and all other amounts
are in terms of the given currency, not the default currency.

Note that there is no way for two or more individual elements that represent amounts—and are
directly part of the same aggregate—to have different currencies. For example, there is no way in
a statement download to have a different currency for the <LEDGERBAL> and the
<AVAILBAL>, because they are both directly members of <STMTRS>. In most cases, you can use
the optional <BAL> aggregates to overcome this limitation, since <BAL> aggregates accept
individual <CURRENCY> aggregates.

The default currency for a request is the currency of the source account. For example, the
currency for <BANKACCTFROM>,

OFX 1.5.1 Specification 11/23/98 75

The <CURRATE> should be the one in effect throughout the scope of the <CURRENCY>
aggregate. It is not necessarily the current rate. Note that the <CURRATE> needs to take into
account the choice of the FI for formatting of amounts (that is, where the decimal is) in both
default and overriding currency, so that a client can do math. This can mean that the rate is
adjusted by orders of magnitude (up or down) from what is commonly reported in newspapers.

Tag Description

<CURRENCY> or Currency aggregate

<ORIGCURRENCY>
<CURRATE> Ratio of <CURDEF> currency to <CURSYM> currency, in decimal form, rate
<CURSYM> 1SO-4217 3-letter currency identifier, A-3

</CURRENCY> or
</ORIGCURRENCY>

In some cases, OFX defines transaction responses so that amounts have been converted to the
home currency. However, OFX allows Fls to optionally report the original amount and the
original (foreign) currency. In these cases, transactions include a specific tag for the original
amount, and then a <ORIGCURRENCY> tag to report the details of the foreign currency.

Again, <CURRENCY> means that OFX has not converted amounts. Whereas,
<ORIGCURRENCY> means that OFX has already converted amounts.

5.3 Country-Specific Tag Values

Some of the tags in OFX have values that are country-specific. For example,
<USPRODUCTTYPE> is useful only within the United States. OFX will extend in each country
as needed to provide tags that accept values useful to that country. Clients in other countries that
do not know about these tags must simply skip them.

In some cases, a tag value represents a fundamental way of identifying something, yet there does
not exist a world-wide standard for such identification. Examples include bank accounts and
securities. In these cases, OFX must define a single, extensible approach for identification. For
example, CUSIPs are used within the U.S., but not in other countries. However, CUSIPs are
fundamental to relating investment securities, holdings, and transactions. Thus, a security ID
consists of a two-part aggregate: one to identify the naming scheme, and one to provide a value.
OFX will define valid naming schemes as necessary for each country.

76 5.3 Country-Specific Tag Values

CHAPTER 6 DATA SYNCHRONIZATION

6.1 Overview

Currently, some systems provide only limited support for error recovery and no support for
backup files or multiple clients. The OFX data synchronization approach, described in this
chapter, handles all of these situations.

OFX defines a powerful form of data synchronization between clients and servers.

OFX data synchronization addresses the following problems:
0O Error recovery

O Use of multiple client applications

O Restoring from a backup file

0 Multiple data files (for example, one copy at home, another at work).

This chapter first provides a brief background of error recovery problems and then presents the
basic strategy used in OFX to perform data synchronization. Each OFX service includes specific
details for data synchronization requests and responses.

Most of the information in this chapter concerns data synchronization, since it is a relatively new
concept. The final section in this chapter discusses alternatives to full synchronization, and
summarizes the options for each.

6.2 Background

When a client begins a connection with a server for which the connection does not successfully
complete, there are two main problems:

0 Unconfirmed requests:
If a client does not receive a response to work it initiates, it has no way of knowing whether
the server processed the request. It also does not have any server-supplied information about
the request, such as a server ID number.

0 Unsolicited data:
Some banking protocols allow a server to send data to the client whenever the client makes a
connection. This specification assumes that the first client that calls in after the unsolicited
data is available for download receives the data. If the connection fails, this information
would be forever lost to the client. Examples of unsolicited data include updates in the status
of a bill payment and e-mail responses.

Unsolicited data presents problems beyond error recovery. Because the first client that connects
to a server is the only one to receive unsolicited data, this situation precludes use of multiple

OFX 1.5.1 Specification 11/23/98 77

clients without a data synchronization method. For example, if a user has a computer at work
and one at home, and wants to perform online banking from both computers, a bank server
could send unsolicited data to one but not the other.

An even greater problem occurs when a user resorts to a backup copy of the client data file. This
backup file will be missing recent unsolicited data with no way to retrieve it from the server once
the server sends it.

6.3 Data Synchronization Approach

A simple solution is to make sure that clients can always obtain information from the server for a
reasonable length of time. Clients can request recent responses—whether due to client-initiated
work or other status changes on the server—by supplying the previous endpoint in the response
history. Servers always supply a new endpoint whenever they supply responses.

If a client connection fails—or a client receives a response, but crashes before updating its
database—the client will not save the new endpoint. On the next synchronization request, the
server sends the same information (plus any further status changes).

If a user switches to a backup file, again the client will use the older endpoint in the
synchronization request.

If multiple clients are in use, each will send requests based on its own endpoint, so that both
clients will obtain complete information from the server. This is one reason why OFX responses
carry enough information from the request to enable them to be processed on their own. The
diagram below shows the relationship between clients and servers.

78 6.3 Data Synchronization Approach

DATA SERVER

(Financial Institution)

Transaction 9
Transaction 8
Transaction 7
Transaction 6
Transaction 5
Transaction 4
Transaction 3
Transaction 2
Transaction 1

Client sends
token #4

Client sends
token #7

Server responds
with transactions 8-9

Server responds
with transactions 5-9

CLIENT #1 Transaction 7 CLIENT #2 Transaction 4
Transaction 6 [~ [Transaction 3
(Customer) Transaction 5 (Customer) Transaction 2

Transaction 4

Transaction 1

Transaction 3
Transaction 2
Transaction 1

OFX relieves the server from maintaining any special error-recovery state information. However,
OFX requires the server to maintain a history of individual responses and a way to identify a
position in the history. This ID could be a time stamp, or be based on its existing state
information.

Note: OFX does not require servers to store responses based on individual
connections. Also, not all requests are subject to synchronization. For example, OFX
does not require servers to store statement-download responses separately for data
synchronization.

6.4 Data Synchronization Specifics

OFX does synchronization separately for each type of response. In addition, a synchronization
request might include further identifying information, such as a specific account number. This
specification defines the additional information for each synchronization request.

Each OFX service identifies the responses that are subject to data synchronization. For example, a
bank statement-download is a read-only operation from the server. A client can request again if
it fails; consequently, there is no data synchronization for this type of response.

OFX 1.5.1 Specification 11/23/98 79

The basis for synchronization is a token as defined by the <TOKEN> tag. The server can create a
token in any way it wishes. The client simply holds the token for possible use in a future
synchronization request.

The server can derive a token from one of the following:
0 Time stamp

0 Sequential number

0 Unique non-sequential number

0 Other convenient values for a server

Note: OFX reserves a <TOKEN> value of zero for the first time each type of response
does a synchronization task.

Note: Servers should return <TOKEN>=-1 (minus 1) in the event they must respond
with an error. Since there is no XXXTRNRS wrapper inside the SYNCXXXRS wrapper,
the <SYNCERROR> tag was added in version 2, to allow the server to return the value
that would normally be in the <CODE> field of the <STATUS> aggregate.

Clients will send a <TOKEN> of zero on their first synchronization request. Servers should send
all available history, allowing a new client to know about work done by other clients. If a user’s
account has never been used with OFX, the server returns no history.

The server can use different types of tokens for different types of responses, if suitable for the
server.

Tokens can contain up to 10 alphanumeric characters in V1 message sets, and 36 in V2 message
sets; see Chapter 3, "Common Aggregates, Elements, and Data Types." Tokens need to be unique
only with respect to the type of synchronization request and the additional information in that
request. For example, a bill payment synchronization request takes an account number;
therefore, a token needs to be unique only within payments for the account.

Servers will not have infinite history available, so synchronization responses can optionally
include a <LOSTSYNC> element with a value of Y (yes) if the old token in the synchronization
request was older than the earliest available history. This tag allows clients to alert users that
some responses have been lost.

Note: Tokens are unrelated to <TRNUID>s, <SRVRTID>s, and <FITID>s, each of
which serves a specific purpose and has its own scope and lifetime.

A <SRVRTID> is not appropriate as a <TOKEN> for bill payment. A single payment has a single
<SRVRTID>, but it can undergo several state changes over its life and thus have several entries
in the token history.

80 6.4 Data Synchronization Specifics

There are three different ways a client and a server can conduct their requests and responses:

O Explicit synchronization — A client can request synchronization without sending any other
OFX requests. The client sends a synchronization request, including the current token for that
request. The response includes responses more recent than the given token, along with a new
token.

O Synchronization with new requests — A client can request synchronization as part any new
requests it has. The client gives the old token. The response includes responses to the new
requests plus any others that became available since the old token, along with a new token.
An aggregate contains the requests so that the server can process the new requests and update
the token as an atomic action.

O New requests without synchronization — A client can make new requests without providing
the old token. In this case, it expects just responses to the new requests. A subsequent request
for synchronization will cause the server to send the same response again, because the client
did not update its token.

Each request and response that requires data synchronization will define a synchronization
aggregate. The aggregate tells the server which kind of data it should synchronize. By
convention, these aggregates always have SYNC as part of their tag names, for example,
<PMTSYNCRQ>. You can use these aggregates on their own to perform explicit
synchronization, or as wrappers around one or more new transactions. For example, you can use
<PMTSYNCRQ> aggregates to request synchronization in combination with new work. You can
use the <PMTTRNRQ> by itself if you do not require synchronization.

Some clients can choose to perform an explicit synchronization before sending any new requests
(with or without synchronization). This practice allows clients to be up-to-date and possibly
interact with the user before sending any new requests. Other clients can simply send new
requests as part of the synchronization request.

If a client synchronizes in one file, then sends new work inside a synchronization request in a
second file, there is a small chance that additional responses become available between the two
connections. There is even a smaller chance that these would be conflicting requests, such as
modifications to the same object. However, some clients and some requests might require
absolute control, so that the user can be certain that they are changing known data. To support
this, synchronization requests can optionally specify <REJECTIFMISSING> element. The tag
tells a server that it should reject all enclosed requests if the supplied <TOKEN> is out of date
before considering the new requests. That is, if any new responses became available, whether related
to the incoming requests or not (but part of the scope of the synchronization request), the server
should immediately reject the requests. It should still return the new responses. A client can then
try again until it finds a stable window to submit the work. See section 6.5 for more information
about conflict detection and resolution.

The password change request and response present a special problem. See section 2.5.2 for
further information.

OFX 1.5.1 Specification 11/23/98 81

6.5 Conflict Detection and Resolution

Conflicts arise whenever two or more users or servers modify the same data. This can happen to
any object that has a <SRVRTID> that supports change or delete requests. For example, one
spouse and the other might independently modify the same recurring bill payment model. From
a server perspective, there is usually no way to distinguish between the same user making two
intended changes and two separate users making perhaps unintended changes. Therefore, OFX
provides enough tools to allow clients to carefully detect and resolve conflicts. OFX requires only
that a server process atomically all requests in a single <OFX> block.

A careful client always synchronizes before sending any new requests. If any responses come
back that could affect a user’s pending requests, the client can ask the user whether it should still
send those pending requests. Because there is a small chance for additional server actions to
occur between the initial synchronization request and sending the user’s pending requests,
extremely careful clients can use the <REJECTIFMISSING> element. Clients can iterate sending
pending requests inside a synchronization request with <REJECTIFMISSING> and testing the
responses to see if they conflict with pending requests. A client can continue to do this until a
window of time exists wherein the client is the only agent trying to modify the server. In reality,
this will almost always succeed on the first try.

6.6 Synchronization vs. Refresh

There are some situations, and some types of clients, for which it is preferable that the client ask
the server to send everything it knows, rather than just a set of changes. For example, a client
that has not connected often enough may have lost synchronization. Or, the user might be using
a completely stateless client, such as a web browser.

Note: OFX does not require a client to refresh just because it has lost synchronization.

Clients will mainly want to refresh lists of long-lived objects on the server; generally objects with
a <SRVRTID>. For example, OFX Payments has both individual payments and models of
recurring payments.

A brand new client, or a client that lost synchronization, might want to learn about in-progress
payments by doing a synchronization refresh of the payment requests. It would almost certainly
want to do a synchronization refresh of the recurring payment models, because these often live
for months or years.

A client might not perform a synchronization refresh on e-mail responses.

82 6.5 Conflict Detection and Resolution

A client can request a refresh by using the <REFRESH> tag with value of Y instead of the
<TOKEN?> tag. Server descriptions detail the exact behavior that servers should follow.
However, the general rule is that servers should send responses that emulate a client creating or
adding each of the objects governed by the particular synchronization request.

In these cases, servers set <TRNUID> to zero; the standard value for server-generated responses.

There is no need to recreate a stream of responses that emulate the entire history of the object,
just an add response that reflects the current state. For example, if you create a model and then
modify it three times, even if this history would have been available for a regular
synchronization, servers should only send a single add that reflects the current state.

A client that wants only the current token, without refresh or synchronization, makes requests
with <TOKENONLY> and a value of Y.

In all cases, servers should send the current ending <TOKEN?> for the synchronization request in
refresh responses. This allows a client to perform regular synchronization requests in the future.

The following table summarizes the options in a client synchronization request:

Tag Version | Description

Client synchronization

option; <TOKEN>,

<TOKENZ2>,

<TOKENONLY>, or

<REFRESH>

<TOKEN> V1only | Previous value of <TOKEN> received for this type of
synchronization request from server; 0 for first-time requests;
token

<TOKEN2> V2 only | Previous value of <TOKEN2> received for this type of
synchronization request from server; 0 for first-time requests;
token2

<TOKENONLY> Request for just the current <TOKEN> without the history,
Boolean

<REFRESH> Request for refresh of current state, Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,
Boolean

OFX 1.5.1 Specification 11/23/98 83

6.7 Typical Server Architecture for Synchronization

This section describes how an Fl can approach supporting synchronization based on the
assumption that modifications to an existing financial server will be kept to a minimum.

The simplest approach is to create a history database separate from the existing server. This
history could consist of the actual OFX transaction responses (<TRNRS> aggregates) that are
available to a synchronization request. The history database could index records by token,
response type, and any other identifying information for that type, such as account number.

The diagram below shows a high-level model of the OFX architecture for a financial institution.
Notice that the diagram shows the presence of a history journal.

Client FINANCIAL INSTITUTION

ENVIRONMENT

Teller
Services

OFX
Server

Transaction
Manager

Bank Server

Synchronization
Request/Response

Account
Records

: History Journal

84 6.7 Typical Server Architecture for Synchronization

The server adds responses to the history journal for any action that takes place on the existing
server. This is true whether the OFX requests initiate the action or, in the case of recurring
payments, it happens automatically on the server. Once added to the history journal, the server
can forget them.

The areas of the OFX server that process synchronization requests need only search this history
database for matching responses that are more recent than the incoming token.

For a refresh request, an OFX server would access the actual bank server to obtain the current
state rather than recent history.

Periodically the bank server would purge the history server of older entries.

Only requests that are subject to synchronization need to have entries in the history database.
Statement downloads do not involve synchronization; therefore, the Fl server should not add
these responses to the history database. Since statement downloads are usually the largest in
space and the most frequent, eliminating these saves much of the space a response history might
otherwise require.

More sophisticated implementations can save even more space. The history database could save
responses in a coded binary form that is more compact than the full OFX response format. Some
FIs might have much or all of the necessary data already in their servers; consequently, they
would not require new data. An Fl could regenerate synchronization responses rather than recall
them from a database.

OFX 1.5.1 Specification 11/23/98 85

6.8 Typical Client Processing of Synchronization Results

The diagram below shows a general flowchart of what an OFX client would do with the results
of a synchronization request. Most requests and responses subject to data synchronization
contain both <TRNUID> and <SRVRTID>.

l Theresponse isa modification or changein status.
Doesthe <SRVRTID> in v Client applies all updated
this response match one & linformation to its copy of
already recorded by the the matching transaction.
client?
No

Theresponseisanew transaction created by another client.

Was the <TRNUID> N Client adds the transaction
returned in the response © ltoitslocal list of
created by thisclient? transactions.

Yes

Theresponseisto an add request from this client.

Thisisaresponseto a The client should record the
request initiated by this associated <SRVRTID>, if
client. response status=SUCCESS

6.9 Simultaneous Connections

It is increasingly common that a server can get simultaneous or overlapping requests from the
same user over two different computers. OFX requires a server to process each set of requests
sent in a file as an atomic action. Servers can deal with the problems that arise with simultaneous
use in two ways:

0 Allow simultaneous connections, ensure each is processed atomically, and use the data
synchronization mechanism to bring the two clients up to date. This is the preferred method.

O Lock out all but one user at a time, returning the error code 15501 for multiple users.

86 6.8 Typical Client Processing of Synchronization Results

6.10 Synchronization Alternatives

Although itis RECOMMENDED that OFX servers implement full synchronization as described
in this chapter, an alternate approach, “lite synchronization,” could be easier for some servers to
support. This approach focuses only on error recovery and does not provide any support for
multiple clients, multiple data files, or use of backup files. The approach is to preserve the
message sets while simplifying the implementation.

In addition, some clients might prefer to use response-file based error recovery with all servers,
even if the client and some servers support full synchronization. This section first describes lite
synchronization, and then explains the rules that clients and servers use to decide how to
communicate.

Note: Lite synchronization servers do not support Refresh. In other words TOKEN=0
is not the same as Refresh synchronization. Therefore, clients should not send Refresh
to a lite synchronization server.

6.10.1 Lite Synchronization

Lite synchronization requires servers to accept all synchronization messages, but does not
require them to keep any history or tokens. Responses need to be sent only once and then the
server can forget them. Responses to client requests, whether or not they are made inside a
synchronization request, are processed normally. Responses that represent server-initiated work,
such as payment responses that arise from recurring payments, are sent only in response to
synchronization requests. A server does not have to hold responses in case a second client makes
a synchronization request.

Because full synchronization supports error recovery, an alternative is needed for lite
synchronization. Servers using lite synchronization keep a copy of the entire response file they
last sent. Clients requesting that servers prepare for error recovery generate a globally unique ID
for each file they send. In the OFX headers, there are two tags associated with error recovery:

0 OLDFILEUID - UID of the last request and response that was successfully received and
processed by the client

0 NEWFILEUID - UID of the current file

The format of these is the same as used with <TRNUID> as documented in Section 2.4.6.

OFX 1.5.1 Specification 11/23/98 87

Servers use the following rules:

0 If OLDFILEUID is set to NONE, the client is not requesting file-based error recovery for this
session. The server does not need to save the response file. In addition, since the client is not
specifying a previous file that can now be committed, the server should not search for a
response file to delete. Optionally, a server can choose to test for a client error by checking
whether NEWFILEUID matches a previous request file. If NEWFILEUID matches a previous
request file, but the client sent OLDFILEUID set to NONE, the client has committed an error.
In this case, the server should report a general error.

0 If OLDFILEUID is not set to NONE and NEWFILEUID matches a previous request file, the
client is requesting error recovery. The server should send the matching saved response file.

O If OLDFILEUID is not set to NONE and OLDFILEUID matches a file saved on the server, then
OLDFILEUID is a file that the client has successfully processed and the server can delete it.
The client is also requesting that the response for the current file be saved under the
NEWFILEUID for possible error recovery.

Note: If NEWFILEUID matches a previous request file then the request file identified
by the NEWFILEUID must contain exactly the same set of transactions as the previous
request file. Servers can reject the file if it contains new or modified transactions.
Clients should disallow PINCH transactions during error recovery.

A server will never need to save more than one file per client data file, but because of possible
multi-client or multi-data file usage, it might need to save several files for a given user. A server
should save files for as long as possible, but not indefinitely. A server cannot recognize an error
recovery attempt if it comes after it has purged the error recovery file. A server would process it
as a new request. In this case, a server should recognize duplicate transaction UIDs for client-
initiated work, such as payments, and then reject them individually. Server-generated responses
would be lost to the client.

For a server accustomed to sending unsolicited responses, lite synchronization should closely
match the current response-file based implementation. The only difference is that a server should
hold the unsolicited responses until the client makes the first appropriate synchronization
request; rather than automatically adding them to any response file. Once added, the server can
mark them as delivered, relying on error recovery to insure actual delivery.

Note: OFX requires a server to authenticate a client in Error Recovery.

88 6.10 Synchronization Alternatives

6.10.2 Relating Synchronization and Error Recovery

Client and server developers should first decide whether or not they will support full
synchronization. If they can, then they can support response-file error recovery as well, or they
can rely on synchronization to perform error recovery. If they adopt only lite synchronization,
OFX requires response-file error recovery. A server describes each of these choices in its server
profile records. The following combinations are valid:

0 Full synchronization with response-file error recovery
0 Full synchronization without separate response-file error recovery

O Lite synchronization with response-file error recovery

Clients request response-file error recovery by including the old and new session UIDs in the
header. If they are absent, servers need not save the response file for error recovery. Clients
request synchronization by using those synchronization requests defined throughout this
specification.

6.11 Examples

Here is an example of full synchronization using bill payment as the service. OFX Payments
provides two different synchronization requests and responses, each with their own token; one
for payment requests and one for repeating payment model requests. Note that these simplified
examples do not include the outer <OFX> layer, <SIGNON>, and so forth.

Client A requests synchronization:

<PMT'SYNCRQ>
<TOKEN>123
<REJECTI FM SSI NG>N
<BANKACCTFROV>
<BANKI D>121000248
<ACCTI D>123456789
<ACCTTYPE>CHECKI NG
</ BANKACCTFROV>
</ PMTSYNCRQ>

The server sends in response:

<PMI'SYNCRS>
<TOKEN>125
<LOSTSYNC>N
<BANKACCTFROW>
<BANKI D>121000248

OFX 1.5.1 Specification 11/23/98 89

<ACCTI D>123456789
<ACCTTYPE>CHECKI NG
</ BANKACCTFROW>
<PMI'TRNRS>
<TRNUI D>123
<STATUS>
status details
</ STATUS>
<PMIRS>
details on a paynent response
</ PMIRS>
</ PMITRNRS>
<PMTTRNRS>
<TRNUI D>546
<STATUS>
status details
</ STATUS>
<PMIRS>
details on another paynment response
</ PMTRS>
</ PMITRNRS>
</ PMTSYNCRS>

Client A was missing two payment responses, which the server provides. At this point, client A
is synchronized with the server. Client A now makes a new payment request, and includes a
synchronization update as part of the request. This update avoids having to re-synchronize the
expected response at a later time.

<PMTSYNCRQ>
<TOKEN>125
<REJECTI FM SSI NG>N
<BANKACCTFROW>
<BANKI D>121000248
<ACCTI D>123456789
<ACCTTYPE>CHECKI NG
</ BANKACCTFROW>
<PMITRNRQ>
<TRNUI D>12345
<PMIRQ>
detail s of a new paynent request
</ PMTRQ>
</ PMTTRNRQ>
</ PMTSYNCRQ>

90 6.11 Examples

The response to this new request:

<PMI'SYNCRS>

<TOKEN>126
<LOSTSYNC>N
<BANKACCTFROW>

<BANKI D>121000248

<ACCTI D>123456789

<ACCTTYPE>CHECKI NG
</ BANKACCTFROW>
<PMI'TRNRS>

details on a payment response to the new request
</ PMITTRNRS>
</ PMTSYNCRS>

The client now knows that the server has processed the payments request it just made, and that
nothing else has happened on the server since it last synchronized with the server.

Assume client B was synchronized with respect to payments for this account up through token
125. If it called in now and synchronized—with or without making additional requests—it
would pick up the payment response associated with token 126. It records the same information
that was in client A, which would give both clients a complete picture of payment status.

OFX 1.5.1 Specification 11/23/98 91

92

6.11 Examples

CHAPTER 7 FI PROFILE

7.1 Overview

OFX clients use the profile to learn the capabilities of an OFX server. This information includes
general properties such as account types supported, user password requirements, specific
messages supported, and how the client should batch requests and where to send the requests. A
client obtains a portion of the profile when a user first selects an Fl. The client obtains the
remaining information prior to sending any actual requests to that FI. The server uses a time
stamp to indicate whether the server has updated the profile, and the client checks periodically
to see if it should obtain a new profile.

In more detail, a profile response contains the following sections, which a client can request
independently:

O Message Sets — list of services and any general attributes of those services. Message sets are
collections of messages that are related functionally. They are generally subsets of what users
see as a service.

O Signon realms - Fls can require different signons (user ID and/or password) for different
message sets. Because there can only be one signon per <OFX> block, a client needs to know
which signon the server requires and then provide the right signon for the right batch of
messages.

The profile message is itself a message set. In files, OFX uses the <PROFMSGSV1> and
<PROFMSGSV2> aggregates to identify this profile message set.

The following sections describe the general use of profile information.

7.1.1 Message Sets

A message set may be thought of as representing an available financial service. A message set
itself is a collection of related messages. For example, Chapter 11, "Banking," defines several
message sets: statement download, credit card statement download, intrabank transfers, and so
forth. A server may route all of the messages in a message set to a single URL and merge their
versions together.

Clients and servers generally use message sets as the granularity to decide what functionality
they will support. A “banking” server can choose to support the statement download and
intrabank transfer message sets, but not the wire transfer message set. Attributes are available in
many cases to further define how OFX supports a message set.

OFX 1.5.1 Specification 11/23/98 93

Each portion of the OFX specification that defines messages also defines the message set to
which that the messages belongs. This includes what additional attributes are available for those
messages and whether OFX requires the message set or it is optional.

7.1.2 Version Control

Message sets are the basis of version control. Over time there will be new versions of the message
sets, and at any given time servers will likely want to support more than one version of a
message set. Clients should also be capable of supporting as many versions as possible. Through
the profile, clients discover which versions are supported for each message set. Clients and
servers exchange messages at the highest common level for each message set.

The DTD used to parse the OFX document determines which message sets are supported. There
are currently two supported DTDs. OFX 1.5.1 supports all message sets, and OFX 1.0.2 supports
only version 1 message sets, except Bill Presentment. For more information about DTD versions,
see section 1.3. For more information about message set versions, see 2.4.5.3.

There are two versions of the profile message set. Version 2 of the profile message set allows 1 or
more <MSGSETCORE> aggregates to be returned to the client. This capability allows for
multiple URLSs to be utilized for different versions of each <MSGSETCORE>

The purpose of more than 1 URL for a single version of a message set is to allow the same
version of signon to be sent to all the URLSs that require that version of signon. For example, if
banking version 1 is at one URL (A) and billpay version 1 is at another URL (B), both may need
version 1 of signon to be used. In that case, <MSGSETCORE> inside <BANKMSGSETV1> would
refer only to <URL> A and <MSGSETCORE> inside <BILLPAYMSGSETV1> would refer only to
<URL> B, but both URLs (A and B) would be listed inside <MSGSETCORE> inside
<SIGNONMSGSETV1>.

94 7.1 Overview

7.1.3 Batching and Routing

To allow Fls to set up different servers for different message sets, different versions, or to directly
route some messages to third party processors, message sets define the URL to which a server
sends messages in that message set. Each version of a message set can have a different URL. In
the common case where many or all message sets are sent to a single URL, clients will
consolidate messages across compatible message sets. Clients can consolidate when:

O Message sets have the same URL
0 Message sets have a common security level

0 Message sets have the same signon realm

Note: The signon message set can be used with other message sets even if it contains
incompatible settings for the URL, security level, or signon realm. The message set
information for signon messages is used only if the signon message is sent by itself.

The same message set may be supported by multiple servers. In this case, each server that
supports a particular message set must have a unique URL.

7.1.4 Client Signon for Profile Requests

Clients must include a signon request <SONRQ> with every message, including profile requests.
The first time that a client requests the FI profile, the signon request will be present, but the user
ID and password will not be valid and will be ignored by the server.

Note: Since elements cannot be set to a blank value, <USERID> and/or <USERPASS>
may be set to lower case "anonymous" followed by 23 zeroes.

Once the user has enrolled and received his or her user ID and password, the client will request
the profile again, even if the profile is not yet out-of-date. At this point, the server can respond

with a profile response that indicates that the profile is up-to-date. Alternatively, if the Fl wants
to return a customer-specific profile, the FI can choose to return a new FI profile in the response.

For more information about signon requests, refer to section 2.5.

OFX 1.5.1 Specification 11/23/98 95

7.1.5 Profile Request <PROFRQ>

A profile request indicates which profile components a client desires. It also indicates what the
client’s routing capability is. Profiles returned by the FI must be compatible with the requested
routing style, or the server returns an error.

Profile requests are not subject to synchronization.
Profile requests must appear within a <PROFTRNRQ> transaction wrapper.
Tag Description

<PROFRQ> Profile-request aggregate

<CLIENTROUTING> | Identifies client routing capabilities, see table below

<DTPROFUP> Date and time client last received a profile update, datetime
</PROFRQ>
Tag Description
NONE Client cannot perform any routing. All URLs must be the same. All message sets

share a single signon realm.
SERVICE Client can perform limited routing. See details below.

MSGSET Client can route at the message-set level. Each message set can have a different
URL and/or signon realm.

The SERVICE option supports clients that can route bill payment messages to a separate URL
from the rest of the messages. Because the exact mapping of message sets to the general concept
of bill payment can vary by client and by locale, this specification does not provide precise rules
for the SERVICE option. Each client will define its requirements.

96 7.1 Overview

7.2 Profile Response <PROFRS>

To determine whether the client has the latest version of the FI profile, the server checks the date
and time passed by the client in <DTPROFUP>.

If the client has the latest version of the Fls profile, the server returns status code 1 in the
<STATUS> aggregate of the profile-transaction aggregate <PROFTRNRS>. The server does not
return a profile-response aggregate <PROFRS>.

If the client does not have the latest version of the FI profile, the server responds with the profile-
response aggregate <PROFRS> in the profile-transaction aggregate <PROFTRNRS>. The
response includes message set descriptions, signon information, and general contact
information.

OFX 1.5.1 Specification 11/23/98 97

Tag
<PROFRS>
<MSGSETLIST>
<XXXMSGSET>
<IXXXMSGSET>
</MSGSETLIST>
<SIGNONINFOLIST>
<SIGNONINFO>
</SIGNONINFO>
</SIGNONINFOLIST>
<DTPROFUP>
<FINAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>

<COUNTRY>

<CSPHONE>
<TSPHONE>
<FAXPHONE>

<URL>

<URL2>

<URLGETREDIRECT>

<EMAIL>

</PROFRS>

Version

V1 only

V2 only

V2 only

Description
Profile-response aggregate
Beginning list of message set information

One or more message set aggregates

Beginning of signon information

Zero or more signon information aggregates

Time this was updated on server, datetime
Name of institution, A-32

Fl address, line 1, A-32

Fl address, line 2, A-32

Fl address, line 3, A-32

Fl address city, A-32

FI address state, A-5

Fl address postal code, A-11

Fl address country; 3-letter country code from 1SO/DIS-
3166, A-3

Customer service telephone number, A-32
Technical support telephone number, A-32
Fax number, A-32

URL for general information about FI (not for sending
data), URL

URL for general information about FI (not for sending
data), URL2

Whether or not the returned URL is a redirection URL.
Boolean

E-mail address for FI, A-80

98

7.2 Profile Response <PROFRS>

7.2.1 Message Set

An aggregate describes each message set supported by an Fl. Message sets in turn contain an
aggregate for each version of the message set that is supported. For a message set named XXX,
the convention is to name the outer aggregate <XXXMSGSET> and the tag for each version
<XXXMSGSETVn>. The reason for message set-specific aggregates is that the set of attributes
depends on the message set. These can change from version to version, so there are version-
specific aggregates as well. The <XXXMSGSET> aggregates should appear in the same order as
their corresponding message sets, as per section 2.4.5.2.

The general form of the response is:

Tag Description

<XXXMSGSET> Service aggregate
<XXXMSGSETVn> Version-of-message-set aggregate, 1 or more
<IXXXMSGSETVn>

<IXXXMSGSET>

The <XXXMSGSETVn> aggregate has the following form:

Tag Description
<XXXMSGSETVn> Message-set-version aggregate

<MSGSETCORE> | 1 common message set information aggregate if profile message set is V1; 1 or
more common message set information aggregates, if profile message set is V2.

</MSGSETCORE>
Message-set Zero or more attributes specific to this version of this message set, as defined
specific by each message set

<IXXXMSGSETVn>

OFX 1.5.1 Specification 11/23/98 99

The common message set information <MSGSETCORE> is as follows:

Tag
<MSGSETCORE>

<VER>

<URL>
<URL2>

<OFXSEC>

<TRANSPSEC>

<SIGNONREALM>

<LANGUAGE>

<COUNTRY>

Version

V1only
V2 only

V2 only

Description
Common-message-set-information aggregate

Version number of the message set, (for example, <VER>1 for
version 1 of the message set), N-5

URL where messages in this set are to be sent, URL
URL where messages in this set are to be sent, URL2

Security level required for this message set; see Chapter 4, "OFX
Security." NONE or TYPE 1.

Y if transport-level security must be used, N if not used; see
Chapter 4, "OFX Security." Boolean

Signon realm to use with this message set, A-32

1 or more.
Language supported, language.

If more than one language is supported, multiple <LANGUAGE>
tags can be sent.

0 or more.

Prefix of country-specific tags supported and field interpretations:
3-letter country code from 1SO/DIS-3166.

If multiple <COUNTRY> tags are present, then multiple countries
are supported. If this field is missing, then it is assumed that only
the USA version of OFX is supported. For example, if the values
“FRA” and “ITA” are present, then the server supports the French
and Italian “versions” of OFX. If a country is supported for any of
the main message sets, then the server should accept a signon
request for that country. Otherwise, the server should reject such a
signon request.

The following countries are currently supported in OFX:

100

7.2 Profile Response <PROFRS>

Tag

<SYNCMODE>

<RESPFILEER>

<SPNAME>

</MSGSETCORE>

Version

Description

COUNTRY Country Name
BEL Belgium

CAN Canada

CHE Switzerland
DEU Germany

ESP Spain

FRA France

GBR Great Britain
ITA Italy

NLD Netherlands
USA United States of America

FULL for full synchronization capability
LITE for lite synchronization capability

See Chapter 6, "Data Synchronization," for more information.

Y if server supports response-file based error recovery, Boolean
See Chapter 6, "Data Synchronization," for more information.

Service provider name, A-32

Some financial institutions out-source their OFX servers to a service
provider. In such cases, the SPNAME element should be included

in the MSGSETCORE.

Note: For all message sets currently defined in OFX, the value of <TRANSPSEC>

must be Y.

OFX 1.5.1 Specification

11/23/98

101

Note: Within a <MSGSETCORE> aggregate, the <VER> element defines the version
number of that message set. It does not refer to the version number of the OFX
specification or the DTD files. For more information about message sets and version
numbers, refer to section 2.4.5.

Note: Within a message set, there can be more than one <MSGSETCORE> aggregate
with the same value for <VER>, or the same value for <URL>, but not the same value
for both. The pair must be unique for each instance of <MSGSETCORE> within a
message set. Multiple <MSGSETCORE>s with the same value for <VER> are used in
instances such as signon or registration, which may have the same version sent to
multiple URLs for different services.

102 7.2 Profile Response <PROFRS>

7.2.2 Signon Realms

A signon realm identifies a set of messages that can be accessed using the same password.
Realms are used to disassociate signons from specific services, allowing Fls to require different
signons for different message sets. In practice, Fls will want to use the absolute minimum
number of realms possible to reduce the user’s workload.

Tag Version Description
<SIGNONINFO> Signon-information aggregate
<SIGNONREALM> Identifies this realm, A-32
<MIN> Minimum number of password characters, N-2
<MAX> Maximum number of password characters, N-2
<CHARTYPE> Type of characters allowed in password; one of ALPHAONLY,

NUMERICONLY, ALPHAORNUMERIC, or
ALPHAANDNUMERIC.

<CASESEN> Y if password is case-sensitive, Boolean

<SPECIAL> Y if special characters are allowed, Boolean

<SPACES> Y if spaces are allowed, Boolean

<PINCH> Y if server supports USERPASSPIN-change requests, Boolean
<CHGPINFIRST> Y if server requires clients to change USERPASSPIN as part of first

signon, Boolean

<PWTYPE> V2 only | The type of password(s) supplied by the client in the signon
request to authenticate the user (see section 2.5.1.1). The following
password types are currently supported in OFX:

PWTYPE Description

FIXED The client supplies (in USERPASS) a normal password that
remains fixed until explicitly changed by the user or the FI.

ONETIME In addition to USERPASS, the client supplies (in
ONETIMEPASS) an additional password that was taken from a list
of one-time passwords sent from the FI to the user.

HWTOKEN In addition to USERPASS, the client supplies (in
ONETIMEPASS) an additional password that was generated by a
hardware token such as a crypto-calculator, typically on a time-
varying basis.

If the PWTYPE tag is not present, then the FIXED password type is
assumed as the default.

</SIGNONINFO>

OFX 1.5.1 Specification 11/23/98 103

7.2.3 Status Codes

Meaning
0 Success (INFO)
1 Client is up-to-date (INFO)
2000 General error (ERROR)

7.3 Profile Message Set Profile Information

The profile message set functions the same way as all other message sets; therefore, it contains a
profile description for that message set. Because <PROFMSGSET> is always part of a message
set response, it is described here. Servers must include the <PROFMSGSET> as part of the profile
response <MSGSETLIST>. There are no attributes, but the aggregate must be present to indicate
support for the message set.

Tag Description
<PROFMSGSET> Message-set-profile-information aggregate
<PROFMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information

</MSGSETCORE>
</PROFMSGSETV1>
<PROFMSGSETV2> Opening tag for V2 of the message set profile information

<MSGSETCORE> Common message set information

</MSGSETCORE>
</PROFMSGSETV2>

</PROFMSGSET>

104 7.3 Profile Message Set Profile Information

CHAPTER 8 ACTIVATION & ACCOUNT INFORMATION

8.1 Overview

The Signup message set defines three messages to help users get setup with their Fl:

0 Enrollment — informs FI that a user wants to use OFX and requests that a password be
returned

O Accounts — asks the FI to return a list of accounts and the services supported for each account

O Activation — allows a client to tell the FI which services a user wants on each account
There is also a message to request name and address changes.

Clients use the account information request on a regular basis to look for changes in a user’s
account information. A time stamp is part of the request so that a server has to report only new
changes. Account activation requests are subject to data synchronization, and will allow multiple
clients to learn how the other clients have been enabled.

In OFX files, the <SIGNUPMSGSV1> and <SIGNUPMSGSV2> aggregates identify the Signup
message.

8.2 Approaches to User Sign-Up with OFX

The message sets in this chapter are designed to allow both Fls and clients to support a variety of
sign-up procedures. There are four basic steps a user needs to go through to complete the sign-

up:

1. Select the FI. OFX does not define this step or provide message sets to support it. Client
developers and Fls can let a user browse or search this information on a web site, or might
define additional message sets to do this within the client. At the conclusion of this step, the
client will have some minimal profile information about the FI, including the set of services
supported and the URL to use for the next step.

2. Enrollment and password acquisition. In this step, the user identifies and authenticates
itself to the FI without a password. In return, the user obtains a password (possibly temporary)
to use with OFX. Fls can perform this entire step over the telephone, through a combination
of telephone requests and a mailed response, or at the FI web site. FIs can also use the OFX
enrollment message to do this by means of the client. The response can contain a temporary
password or users can wait for a mailed welcome letter containing the password.

3. Account Information. In this step, the user obtains a list of accounts available for use with
OFX, and which specific services are available for each account. Even if users have enrolled
over the telephone, clients will still use this message set to help users properly set up the
accounts within the client. Clients periodically check back with the FI for updates.

OFX 1.5.1 Specification 11/23/98 105

4. Service Activation. The last step is to activate specific services on specific accounts. The
activation messages support this step. Synchronization is applied to these messages to ensure
that other clients are aware of activated services.

The combination of media-interface through which an FI accomplishes these steps can vary. Fls
might wish to do steps two through four over the telephone. Clients will still use OFX messages
in steps 3 and 4 to automatically set up the client based on the choices made by the user over the
phone. Other Fls might wish to have the entire user experience occur within the client. Either
way, the OFX sign-up messages support the process.

8.3 Users and Accounts

To support the widest possible set of FIs, OFX assumes that individual users and accounts are in
a many-to-many relationship. Consider a household with three accounts:

0 Checking 1 - held individually by one spouse
0 Checking 2 - held jointly by both
0 Checking 3 - held individually by the other spouse

Checking 2 should be available to either spouse, and the spouse holding Checking 1 should be
able to see both Checking 1 and 2.

OFX expects Fls to give each user their own user ID and password. Each user will go through the
enrollment step separately. A given account need only be activated once for a service; not once
for each user. Clients will use the account information and activation messages to combine
information about jointly held accounts.

If an FI prefers to have a single user ID and password per household or per master account, it
will have to make this clear to users through the enrollment process. It is up to the FI to assign a
single user ID and password that can access all three of the checking accounts described above.

106 8.3 Users and Accounts

8.4 Enrollment and Password Acquisition

The main purpose of the enrollment message is to communicate a user’s intent to access the Fl by
way of OFX and to acquire a password for future use with OFX. Some FIs might return a user 1D
and an initial password in the enrollment response, while others will send them by way of
regular mail.

Note: The client may not know the user ID and password when the it sends the
enrollment request, in such a case the <USERID> and/or <USERPASS> may be set to
lower case "anonymous" followed by 23 zeroes.

Enrollment requests are not subject to synchronization. If the client does not receive a response, it
will simply re-request the enrollment. If a user successfully enrolls from another client before the
first client obtains a response, the server should respond to subsequent requests from the first
client with status code:

13501 - user already enrolled.

8.4.1 User IDs

The OFX <SONRQ> requires a user ID to uniquely identify a user to an FI. The server must
accept the user 1D with or without punctuation.

Many Fls in the United States use social security numbers (SSNs) as the ID. Others create IDs
that are unrelated to the users’ SSNs. Some Fls have existing user IDs that they use for other
online activities that they want to use for OFX as well. FIs might also create new IDs specifically
for OFX. Finally, some Fls might assign IDs while others might allow users to create them.
Because users do not usually know either their OFX sign-on user ID or their password at time of
enrollment, the enrollment response is designed to return both. The enrollment request allows
users to optionally provide a user ID, which an Fl can interpret as their existing online ID or a
suggestion for what their new user ID should be. Ideally, the enrollment process should explain
ID syntax to users.

8.4.2 Enrollment Request <ENROLLRQ>

The enrollment request captures enough information to identify and authenticate a user as being
legitimate and that it has a relationship with the FI.

Fls might require that an account number be entered as part of the identification process.
However, this is discouraged since the account information request is designed to automatically
obtain all account information, avoiding the effort and potential mistakes of a user-supplied
account number.

Itis RECOMMENDED that FlIs provide detailed specifications for user IDs and passwords
along with information about the services available when a user is choosing an FlI.

OFX 1.5.1 Specification 11/23/98 107

The enrollment request must appear within an <ENROLLTRNRQ> transaction wrapper.

Tag

<ENROLLRQ>
<FIRSTNAME>
<MIDDLENAME>
<LASTNAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>
<COUNTRY>
<DAYPHONE>
<EVEPHONE>
<EMAIL>

<USERID>

<TAXID>
<SECURITYNAME>
<DATEBIRTH>

<XXXACCTFROM>

</IXXXACCTFROM>

</ENROLLRQ>

Description

Enrollment-request aggregate
First name of user, A-32

Middle name of user, A-32

Last name of user, A-32

Address line 1, A-32

Address line 2, A-32

Address line 3, A-32

City, A-32

State or province, A-5

Postal code, A-11

3-letter country code from 1SO/DIS-3166, A-3
Daytime telephone number, A-32
Evening telephone number, A-32
Electronic e-mail address, A-80

Actual user ID if already known, or preferred user ID if user can pick, A-
32

ID used for tax purposes (such as SSN), may be same as user 1D, A-32
Mother’s maiden name or equivalent, A-32
Date of birth, date

An account description aggregate for an existing account at the FlI, for
identification purposes only. For example, <BANKACCTFROM> or
<INVACCTFROM>.

This enrollment request is intended for use only by individuals. Business enrollment will be

defined in a later release.

108

8.4 Enrollment and Password Acquisition

8.4.3 Enrollment Response <ENROLLRS>

The main purpose of the enrollment response is to acknowledge the request. In those cases
where Fls permit delivery of an ID and a temporary password, the response also provides for
this. Otherwise the server will send the real response to the user by way of regular mail,
electronic mail, or over the telephone. If enroliment is successful, but the server does not return
the ID and password in the response, a server is REQUIRED to use status code 10 and provide
some information to the user by means of the <MESSAGE> element in the <STATUS> aggregate
about what to expect next.

The enrollment response must appear within an <ENROLLTRNRS> transaction wrapper.

Tag Description
<ENROLLRS> Enrollment-response aggregate
<TEMPPASS> Temporary password, A-32
<USERID> User ID, A-32
<DTEXPIRE> Time the temporary password expires (if <TEMPPASS> included),
datetime
</ENROLLRS>

8.4.4 Enrollment Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

13000 User ID & password will be sent out-of-band (INFO)
13500 Unable to enroll user (ERROR)

13501 User already enrolled (ERROR)

OFX 1.5.1 Specification 11/23/98 109

8.4.5 Examples
An enrollment request:

<ENROLLTRNRQ>

<TRNUI D>12345

<ENROLLRQ>
<FI RSTNAMVE>J0€e
<M DDLENANME>Lee
<LASTNAME>SHi t h
<ADDR1>21 Main St.
<Cl TY>Anyt own
<STATE>TX
<POSTALCODE>87321
<COUNTRY>USA
<DAYPHONE>123- 456- 7890
<EVEPHONE>987- 654- 3210
<EMAI L>j smith@ sp. com
<USERI D>j | s
<TAXI D>123- 456- 1234
<SECURI TYNAME>j bmam
<DATEBI RTH>19530202

</ ENROLLRQ>

</ ENROLLTRNRQ>

And the reply might be:

<ENROLLTRNRS>

<TRNUI D>12345
<STATUS>
<CODE>0
<SEVERI TY>| NFO
</ STATUS>
<ENROLLRS>
<TEMPPASS>changene
<USERI D>j | s
<DTEXPI RE>19970105
</ ENROLLRS>
</ ENROLLTRNRS>

110

8.4 Enrollment and Password Acquisition

8.5 Account Information

Account information requests ask a server to identify and describe all of the accounts accessible
by the signed-on user. The definition of all is up to the FI. Ata minimum, itis RECOMMENDED
that a server include information about all accounts that it can activate for one or more OFX
services. To give the user a complete picture of his relationship with an FI, Fls can give
information on other accounts, even if those accounts are available only for limited OFX services.

Some service providers do not have prior knowledge of user account information. The profile
allows these servers to report this, and clients then know to ask users for account information
rather than reading it from the server.

Clients can perform several tasks for users with this account information. First, the information
helps a client set up a user for online services by giving it a precise list of its account information
and available services for each. Clients can set up their own internal state as well as prepare
service activation requests with no further typing by users. This can eliminate data entry
mistakes in account numbers, routing transit numbers, and so forth.

Second, FlIs can provide limited information on accounts that would not ordinarily be suitable to
OFX services. For example, a balance-only statement download would be useful for certificates
of deposits even though a customer or an FI might not want or allow CDs to be used for full
statement download.

For each account, there is one <ACCTINFO> aggregate returned. The aggregate includes one
service-specific account information aggregate for each service available to that account. That, in
turn, provides the service-specific account identification. Common to each service-specific
account information aggregate is the <SVCSTATUS> tag, which indicates the status of this
service on this account.

A server should return joint accounts (accounts for which more than one user ID can be used to
access the account) for either user.

Requests and responses include a <DTACCTUP> element. Responses contain the last time a
server updated the information. Clients are REQUIRED to send this in a subsequent request, and
servers are REQUIRED to compare this to the current modification time and only send
information if it is more recent. The server sends the entire account information response if the
client’s time is older; there is no attempt to incrementally update specific account information.

OFX 1.5.1 Specification 11/23/98 111

8.5.1 Request <ACCTINFORQ>

The <ACCTINFORQ> request must appear within an <ACCTINFOTRNRQ> transaction
wrapper.

Description
<ACCTINFORQ> Account-information-request aggregate
<DTACCTUP> Last <DTACCTUP> received in a response, datetime

</ACCTINFORQ>

8.5.2 Response <ACCTINFORS>

The <ACCTINFORS> response must appear within an <ACCTINFOTRNRS> transaction
wrapper.

Tag Description

<ACCTINFORS> Account-information-response aggregate
<DTACCTUP> Date and time of last update to this information on the server, datetime
<ACCTINFO> Zero or more account information aggregates

</ACCTINFO>

</ACCTINFORS> End of account information response

112 8.5 Account Information

8.5.3 Account Information Aggregate <ACCTINFO>

Tag Version Description

<ACCTINFO> Account-information-record aggregate
<DESC> Description of the account, A-80
<PHONE> Telephone number for the account, A-32
<XXXACCTINFO> Service-specific account information, defined in each

service chapter. Some services may include additional
service-specific information. Refer to service chapters
for details.

<XXXACCTFROM> Service-specific account identification. For a given
service XXX, there can be at most one
<XXXACCTINFO> returned. For example, you
cannot return two <BANKACCTINFO> aggregates.

<IXXXACCTFROM>

<SVCSTATUS> V1only AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

<SVCSTATUS2> V2 only AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use
REJECTED = Rejected

<REASON> V2 only This tag is only relevant if
<SVCSTATUS2>="REJECTED”, A-255

<IXXXACCTINFO>

</ACCTINFO>

Note: A server uses the <DESC> field to convey the FI's preferred name for the
account, such as “PowerChecking.” It should not include the account number.

8.5.4 Status Codes

Meaning
0 Success (INFO)
1 Client is up-to-date (INFO)
2000 General error (ERROR)

OFX 1.5.1 Specification 11/23/98 113

8.5.5 Examples
An account information request:

<ACCTI NFOTRNRQ>

<TRNUI D>12345
<ACCTI NFORQ>
<DTACCTUP>19960101

</ ACCTI NFORQ>
</ ACCT| NFOTRNRQ>

And a response for a user with access to one account, supporting banking:

<ACCTI| NFOTRNRS>

<TRNUI D>12345

<STATUS>
<CODE>0
<SEVERI TY>| NFO

</ STATUS>

<ACCTI NFORS>
<DTACCTUP>19960102
<ACCTI NFO>
<DESC>Power Checki ng
<PHONE>8002223333

<BANKACCTI NFO>
<BANKACCTFROW>
<BANKI D>1234567789
<ACCTI D>12345
<ACCTTYPE>CHECKI NG
</ BANKACCTFROW>
<SUPTXDL>Y
<XFERSRC>Y
<XFERDEST>Y
<SVCSTATUS>ACTI VE
</ BANKACCTI NFO>
</ ACCTI NFO>
</ ACCT| NFORS>
</ ACCTI NFOTRNRS>

114 8.5 Account Information

8.6 Service Activation

Clients inform Fls that they wish to start, modify, or terminate a service for an account by
sending service activation requests. These are subject to data synchronization, and servers
should send responses to inform clients of any changes, even if the changes originated on the
server.

Clients use these records during the initial user sign-up process. Once a client learns about the
available accounts and services (by using the account information request above, or by having a
user directly enter the required information), it sends a series of service ADD requests.

If a user changes any of the identifying information about an account, the client sends a service
activation request containing both the old and the new account information. Servers should
interpret this as a change in the account, not a request to transfer the service between two
existing accounts, and all account-based information such as synchronization tokens should
continue. If a user or Fl is reporting that service should be moved between two existing accounts,
service must be terminated for the old account and started for the new account. The new account
will have reset token histories, as with any new service.

Each service to be added, changed, or removed is contained in its own request because the same
real-world account might require different <XXXACCTFROM> aggregates depending on the
type of service.

OFX 1.5.1 Specification 11/23/98 115

8.6.1 Activation Request and Response

8.6.1.1 Request <ACCTRQ>

The <ACCTRQ> request must appear within an <ACCTTRNRQ> transaction wrapper.

Tag
<ACCTRQ>

Action identification. Specify
either <SVCADD>,
<SVCCHG>, or <SVCDEL>

<SCVCADD>
</SCVCADD>
-Or-
<SVCCHG>
</SVCCHG>
or‘
<SVCDEL>
</SVCDEL>

<SvC>

<SvC2>

</ACCTRQ>

Version

V1only

V2 only

Description

Account-service-request aggregate

Action aggregate, either <SVCADD>, <SVCCHG>, or

<SVCDEL>

Service-addition aggregate

Service-change aggregate

Service-deletion aggregate

Service to be added/changed/deleted

BANKSVC = Banking service
BPSVC = Payments service
INVSVC = Investments

Service to be added/changed/deleted

BANKSVC = Banking service
BPSVC = Payments service

INVSVC = Investments

PRESSVC = Bill Presentment service

116

8.6 Service Activation

8.6.1.2 Response <ACCTRS>

The <ACCTRS> response must appear within an <ACCTTRNRS> transaction wrapper.

Tag
<ACCTRS>

Action identification. Specify
either <SVCADD>,
<SVCCHG>, or <SVCDEL>

<SVCADD>
</SVCADD>
-Or.
<SVCCHG>
</SVCCHG>
-Or.
<SVCDEL>
</SVCDEL>

<SvC>

<SvC2>

<SVCSTATUS>

<SVCSTATUS2>

<REASON>

</ACCTRS>

Version

V1only

V2 only

V1only

V2 only

V2 only

Description

Account-service-response aggregate

Service-addition aggregate

Service-change aggregate

Service-deletion aggregate

Service to be added/changed:

BANKSVC = Banking service
BPSVC = Payments service
INVSVC = Investments

Service to be added/changed:

BANKSVC = Banking service
BPSVC = Payments service
INVSVC = Investments

PRESSVC = Bill Presentment service

AVAIL = Available, but not yet requested
PEND = Requested, but not yet available

ACTIVE = In use

AVAIL = Available, but not yet requested
PEND = Requested, but not yet available

ACTIVE = In use
REJECTED = Rejected

This tag is only relevant if

<SVCSTATUS2>="REJECTED”, A-255

OFX 1.5.1 Specification

11/23/98

117

8.6.1.3 Service Add Aggregate <SVCADD>

When a client sends a <SVCADD> to a financial institution routing particular messages to
another service provider, it is up to the financial institution to determine whether or not an
<ENROLLRQ> needs to be sent to the service provider along with the <SVCADD>. The FI may
choose to always send an <ENROLLRQ> and ignore the 13550 error message responses, though
this would only be reliable if <XXXACCTFROM> is included in the <ENROLLRQ>. The FI may
also choose to keep a database of enrolled services, so as to send an <ENROLLRQ> only when
the client is sending a <SVCADD?> for a new service. The Fl also has the option of sending
<ENROLLRQ>s to all service providers when the client sends the initial <ENROLLRQ> to the
Fl.

Tag Version | Description
<SVCADD> Service-addition aggregate
<XXXACCTTO> Service-specific-account-identification aggregate (for example,

<BANKACCTTO> or <INVACCTTO>)
</XXXACCTTO>

<PREAUTHTOKEN> V2only | Atoken provided out-of-band by an FI or biller to speed up
activation of the account, A-32

</SVCADD>

8.6.1.4 Service Change Aggregate <SVCCHG>

<SVCCHG> Service-change aggregate

<XXXACCTFROM> Service-specific-account-identification aggregate (for example,
<BANKACCTFROM> or <INVACCTFROM>)

</IXXXACCTFROM>
<XXXACCTTO> Service-specific-account-identification aggregate (for example,
<BANKACCTTO> or <INVACCTTO>)
</XXXACCTTO>
</SVCCHG>

118 8.6 Service Activation

8.6.1.5 Service Delete Aggregate <SVCDEL>

Tag Description
<SVCDEL> Service-deletion aggregate

<XXXACCTFROM> Service-specific-account-identification aggregate (for example,
<BANKACCTFROM> or <INVACCTFROM>)

<IXXXACCTFROM>

</SVCDEL>

8.6.1.6 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)
2009 Destination account not found (ERROR)
2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)
13502 Invalid service (ERROR)

8.6.2 Service Activation Synchronization

Service activation requests are subject to the standard data synchronization protocol. The scope
of these requests and the <TOKEN> is the user ID. The request and response tags are
<ACCTSYNCRQ> and <ACCTSYNCRS>.

OFX 1.5.1 Specification 11/23/98 119

8.6.3 Examples
Activating a payment:

<ACCTTRNRQ>

<TRNUI D>12345
<ACCTRQ>
<SVCADD>
<BANKACCTTC>
<BANKI D>1234567789
<ACCTI D>12345
<ACCTTYPE>CHECKI NG
</ BANKACCTTO>
</ SVCADD>
<SVC>BPSVC
</ ACCTRQ>
</ ACCTTRNRQ>

A response:

<ACCTTRNRS>

<TRNUI D>12345
<STATUS>
<CODE>0
<SEVERI TY>| NFO
</ STATUS>
<ACCTRS>
<SVCADD>
<BANKACCTTO>
<BANKI D>1234567789
<ACCTI D>12345
<ACCTTYPE>CHECKI NG
</ BANKACCTTC>
</ SVCADD>
<SVC>BPSVC
<SVCSTATUS>ACTI VE
</ ACCTRS>
</ ACCTTRNRS>

120

8.6 Service Activation

8.7 Name and Address Changes

Users may request that an FI update the official name, address, phone, and e-mail information
using the <CHGUSERINFORQ>. All modified and unmodified elements are submitted in a
change user information request, <CHGUSERINFORQ>. The lack of inclusion of a field in a
change user request when that field was previously populated implies its deletion on the server.
The response reports all of the current values. An optional USERID has been added to message
set version 2 to facilitate the change of user info by proxy. An example of which would be a
customer service representative who might be asked by the end user to change their address. If
the USERID tag is not present in CHGUSERINFO, then the USERID from the SONRQ is
assumed to be the identifier for the user in question. For security reasons, some of the fields in
the <ENROLLRQ> cannot be changed online, such as tax ID and userID.

The transaction tag is <CHGUSERINFOTRNRQ> and <CHGUSERINFOTRNRS>. These
messages are subject to synchronization, <CHGUSERINFOSYNCRQ>, and
<CHGUSERINFOSYNCRS>.

8.7.1 Change User Information Request <CHGUSERINFORQ>

Tag Version Description
<CHGUSERINFORQ> Change-user-information-request aggregate
<USERID> V2 only User ID, A-32
<FIRSTNAME> First name of user, A-32
<MIDDLENAME> Middle name of user, A-32
<LASTNAME> Last name of user, A-32
<ADDR1> Address line 1, A-32
<ADDR2> Address line 2, A-32
<ADDR3> Address line 3, A-32
<CITY> City, A-32
<STATE> State or province, A-5
<POSTALCODE> Postal code, A-11
<COUNTRY> 3-letter country code from 1SO/DIS-3166, A-3
<DAYPHONE> Daytime telephone number, A-32
<EVEPHONE> Evening telephone number, A-32
<EMAIL> Electronic e-mail address, A-80
</CHGUSERINFORQ>

OFX 1.5.1 Specification 11/23/98 121

8.7.2 Change User Information Response <CHGUSERINFORS>

Tag Version
<CHGUSERINFORS>
<USERID> V2 only
<FIRSTNAME>
<MIDDLENAME>
<LASTNAME>
<ADDR1>
<ADDR2>
<ADDR3>
<CITY>
<STATE>
<POSTALCODE>
<COUNTRY>
<DAYPHONE>
<EVEPHONE>
<EMAIL>

<DTINFOCHG>

</CHGUSERINFORS>

Description
Change-user-information-request aggregate
User ID, A-32

First name of user, A-32

Middle name of user, A-32

Last name of user, A-32

Address line 1, A-32

Address line 2, A-32

Address line 3, A-32

City, A-32

State or province, A-5

Postal code, A-11

3-letter country code from ISO/DIS-3166, A-3
Daytime telephone number, A-32

Evening telephone number, A-32

Electronic e-mail address, A-80

Date and time of update datetime

8.7.3 Status Codes

Meaning
0 Success (INFO)
2000 General error (ERROR)
13503 Cannot change user information (ERROR)
122 8.7 Name and Address Changes

8.8 Signup Message Set Profile Information

A server must include the following aggregates as part of the profile <MSGSETLIST> response,
since every server must support at least the account information and service activation
messages. Servers indicate how enrollment should proceed: via the client, a given web page, or a
text message directing users to some other method (such as a phone call).

Tag
<SIGNUPMSGSET>

<SIGNUPMSGSETV1>

<MSGSETCORE>

</MSGSETCORE>

Enrollment options. Choose one of
<CLIENTENROLL>,
<WEBENROLL>, or
<OTHERENROLL>.

<CLIENTENROLL>

<ACCTREQUIRED>

</CLIENTENROLL>

_Or-
<WEBENROLL>
<URL>

</WEBENROLL>

-0r-
<OTHERENROLL>

<MESSAGE>

</OTHERENROLL>

<CHGUSERINFO>

<AVAILACCTS>

Description
Signup-message-set-profile-information aggregate

Opening tag for V1 of the message set profile
information
Same as V2, other than <PREAUTH> tag added to V2

Common message set information, defined in
Chapter 7, "FI Profile"

Client-based enrollment supported

Y if account number is required as part of enrollment,
Boolean

Web-based enrollment supported

URL to start enrollment process, URL

Some other enrollment process

Message to consumer about what to do next (for
example, a phone number), A-80

Y if server supports client-based user information
changes, Boolean

Y if server can provide information on accounts with
SVCSTATUS available, N means client should expect
to ask user for specific account information, Boolean

OFX 1.5.1 Specification

11/23/98 123

Tag
<CLIENTACTREQ>

</SIGNUPMSGSETV1>

<SIGNUPMSGSETV2>

<MSGSETCORE>

</MSGSETCORE>

Enrollment options. Choose one of
<CLIENTENROLL>,
<WEBENROLL>, or
<OTHERENROLL>.

<CLIENTENROLL>

<ACCTREQUIRED>

</CLIENTENROLL>

-0r-
<WEBENROLL>
<URL2>

</WEBENROLL>
-0r-

<OTHERENROLL>

<MESSAGE2>

</OTHERENROLL>

<CHGUSERINFO>

<AVAILACCTS>

<CLIENTACTREQ>

Version

Description

Y if server allows clients to make service activation
requests (SACCTRQ>), N if server will only advise
clients via synchronization of service additions,
changes, or deletions. Boolean

Opening tag for V2 of the message set profile
information

Same as V1, other than <PREAUTH> tag added to V2

Common message set information, defined in
Chapter 7, "FI Profile"

Client-based enrollment supported

Y if account number is required as part of enrollment,
Boolean

Web-based enrollment supported

URL to start enrollment process, URL?2

Some other enrollment process

Message to consumer about what to do next (for
example, a phone number), A-2000

Y if server supports client-based user information
changes, Boolean

Y if server can provide information on accounts with
SVCSTATUS available, N means client should expect
to ask user for specific account information, Boolean

Y if server allows clients to make service activation
requests (SACCTRQ>), N if server will only advise
clients via synchronization of service additions,
changes, or deletions. Boolean

124

8.8 Signup Message Set Profile Information

Tag Version = Description

<PREAUTH> Y if server supports <PREAUTHTOKEN> for account
activation, Boolean.

</SIGNUPMSGSETV2>

</SIGNUPMSGSET>

OFX 1.5.1 Specification 11/23/98 125

126 8.8 Signup Message Set Profile Information

CHAPTER 9 CUSTOMER TO FI COMMUNICATION

9.1 The E-Mail Message Set

The e-mail message set includes two messages: generic e-mail and generic MIME requests by
way of URLs. In OFX files, the message set names are EMAILMSGSV1 and EMAILMSGSV2.

9.2 E-Mail Messages

OFX allows consumers and Fls to exchange messages. The message body can be placed in HTML
so that Fls can provide some graphic structure to the message. Keep in mind that, as with regular
World Wide Web browsing, an OFX client might not support some or all of the HTML
formatting, so the text of the message must be clear on its own. Clients can request the server to
send graphics (the images referenced in an tag) as part of the response file, or clients can
separately request those elements. If a server sends images, it should use the standard procedure
for incorporating external data as described in Chapter 2, "Structure.” Servers are not required to
support HTML or to send images, even if the client asks.

A user or an Fl can originate a message. E-mail messages are subject to data synchronization so
that a server can send a response again if it is lost or if multiple clients use it.

Because e-mail messages cannot be replied to immediately, the response should just echo back
the original message (so that data synchronization will get this original e-mail message to other
clients). When the Fl is ready to reply, it should generate an unsolicited response (<TRNUID>0)
and the client will pick this up during synchronization.

Client Sends Server Responds

Account information
From, To

Subiject

Message

Account information
From, To

Subject

Message

Type

OFX 1.5.1 Specification 11/23/98 127

9.2.1 Regular vs. Specialized E-Mail

Several services with OFX define e-mail requests and responses that contain additional
information specific to that service. To simplify implementation for140 clients and servers, this
section defines a <MAIL> aggregate that OFX uses in all e-mail requests and responses. For
regular e-mail, the only additional information is an account-from aggregate and whether to
include images in the e-mail response or not.

9.2.2 Basic <MAIL> Aggregate

Tag Description
<MAIL> Core e-mail aggregate
<USERID> User ID such as SSN, A-32
<DTCREATED> | When message was created, datetime
<FROM> Who the message is from, A-32
<TO> Who the message should be delivered to, A-32
<SUBJECT> Subject of message (plain text, not HTML), A-60
<MSGBODY> Body of message, HTML-encoded or plain text depending on <USEHTML>,
HTML-encoded text = A-10000
Plain text = A-2000
</MSGBODY> End of message
<INCIMAGES> Include images in the message body. Boolean
<USEHTML> Y for HTML-formatted text. N for plain text. See section 9.2.2.2 for more
information. Boolean
</MAIL>
128 9.2 E-Mail Messages

9.2.2.1 <INCIMAGES>

The meaning of the <INCIMAGES> tag depends on whether the tag appears in a request or
response.

When used in a request, <INCIMAGES> indicates whether the client accepts mail that includes
images in the message body.

When used in a request... Description

<INCIMAGES>Y The client accepts mail that includes images in the message body. In
this case, the server can choose whether to send images in the response.

<INCIMAGES>N The client does not accept mail that includes images in the message
body. In this case, the server must not send images in the response.

When used in a response, <INCIMAGES> indicates whether the server included images in the
message body.

When used in a response... Description
<INCIMAGES>Y The server included images in the message body.
<INCIMAGES>N The server did not include images in the message body.

9.2.2.2 <USEHTML>

The meaning of the <USEHTML> tag depends on whether the tag appears in a request or
response.

When used in a request, <USEHTML> indicates whether the client sends and accepts HTML-
formatted text in the message body.

When used in a request... Description

<USEHTML>Y The client is including HTML-formatted text in the message body. In
addition, the client will accept mail responses that include HTML-
formatted text in the message body. In this case, a server can choose
whether to respond with HTML-formatted text or plain text.

<USEHTML>N The client is not including HTML-formatted text in the message body.
In addition the client will not accept mail responses that include
HTML-formatted text in the message body.

OFX 1.5.1 Specification 11/23/98 129

When used in a response, <USEHTML> indicates whether the message body includes HTML-
formatted text or plain text.

When used in a response... Description
<USEHTML>Y The server is including HTML-formatted text in the message body.
<USEHTML>N The server is including only plain text in the message body.

Note: When using HTML for the message body, clients and servers are REQUIRED to
enclose the HTML in an SGML-marked section to protect the HTML markup:
<I[CDATA][... html ...]]>. For an example, see section 9.2.5.

9.2.3 E-Mail <MAILRQ> <MAILRS>

E-mail is subject to synchronization. The transaction tag is <MAILTRNRQ> / <MAILTRNRS>
and the synchronization tag is <MAILSYNCRQ> / <MAILSYNCRS>.

Tag Description

<MAILRQ> E-mail-message-request aggregate
<MAIL> Core e-mail aggregate
</MAIL>

</MAILRQ>

In a response, the <TRNUID> is zero if this is an unsolicited message. Otherwise, it should
contain the <TRNUID> of the user’s original message. It is RECOMMENDED that servers
include the <MESSAGE> of the user’s message as part of the reply <MESSAGE>. The
<MESSAGE> contents can include carriage returns to identify desired line breaks.

Tag Description

<MAILRS> E-mail-message-response aggregate
<MAIL> Core e-mail aggregate
</MAIL>

</MAILRS>

130 9.2 E-Mail Messages

9.2.3.1 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)
16500 HTML not allowed (ERROR)
16501 Unknown mail To: (ERROR)

OFX 1.5.1 Specification 11/23/98 131

9.2.4 E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS>

E-mail presents a special case with regards to synchronization. Since FIs will not immediately
reply to a user’s e-mail, the response to the user’s e-mail only echoes the request and confirms
that the e-mail was successfully received. The client receives the real response to the e-mail

following a synchronization request.

Note that this synchronization action expects only the basic <MAILRS> responses. Specialized e-
mail is received by means of their own synchronization requests.

Tag
<MAILSYNCRQ>

Client synchronization
option; <TOKEN>,
<TOKEN2>,
<TOKENONLY>, or
<REFRESH>

<TOKEN>

<TOKEN2>

<TOKENONLY>

<REFRESH>

<REJECTIFMISSING>

<INCIMAGES>

<USEHTML>

<MAILTRNRQ>
</MAILTRNRQ>

</MAILSYNCRQ>

Version

V1only

V2 only

Description

E-mail-synchronization-request aggregate

Previous value of <TOKEN> received for this type of
synchronization request from server; 0 for first-time requests;
token

Previous value of <TOKENZ2> received for this type of
synchronization request from server; 0 for first-time requests;
token2

Request for just the current <TOKEN> without the history,
Boolean

Request for refresh of current state, Boolean

If Y, do not process requests if client <TOKEN> is out of date,
Boolean

Y if the client accepts mail with images in the message body, N
if the client does not accept mail with images in the message
body, Boolean

Y if client wants an HTML response, N if client wants plain text,
Boolean

Mail-transaction-request aggregate (0 or more)

132

9.2 E-Mail Messages

Tag Version Description

<MAILSYNCRS> E-mail-synchronization-response. aggregate
<TOKEN> V1only | Server history marker, token
<TOKEN2> V2 only | Server history marker, token2
<LOSTSYNC> Y if the token in the synchronization request is older than the earliest
entry in the server’s history table. In this case, some responses have
been lost.

N if the token in the synchronization request is newer than or
matches a token in the server’s history table. Boolean

<SYNCERROR> | V2 only | Optional error code, N-6
<MAILTRNRS> Missing e-mail response transactions (0 or more)
</MAILTRNRS>

</MAILSYNCRS>

9.2.5 E-Mail Example

In this example, a consumer requests information about the checking statement just
downloaded. Since the financial institution will not immediately answer the inquiry, the
immediate response only echoes the consumer’s request and confirms that the request was
successfully received.

The client receives the real response at a later time following a mail synchronization request. For
an example of the mail synchronization request and response, see section 9.2.5.1.

Note: This example omits the <OFX> top level and the signon <SONRQ>. Since this
example uses HTML for the message body, it must protect the HTML content in an
SGML CDATA-marked section.

The request:

<MAI LTRNRQ>
<TRNUI D>54321
<MAl LRQ>
<MAIl L>
<USERI D>123456789
<FROM>Janes Hackl eman
<TC>Noel ani Federal Savings
<SUBJECT>What do | need to earn interest?
<DTCREATED>19960305

OFX 1.5.1 Specification 11/23/98 133

<MSGBODY><I[CDATA[<HTML><BODY>I didn’t earn any interest this
month. Can you please tell me what | need to do to earn interest on this
account?</BODY></HTML>

1></MSGBODY>
<INCIMAGES>N
<USEHTML>Y
</MAIL>
</MAILRQ>
</MAILTRNRQ>

The response from the FlI:

<MAILTRNRS>

<TRNUID>54321
<STATUS>
<CODE>0
<SEVERITY>INFO
</STATUS>
<MAILRS>
<MAIL>
<USERID>123456789
<FROM>James Hackleman
<TO>Noelani Federal Savings
<SUBJECT>What do | need to earn interest?
<DTCREATED>19960305

<MSGBODY><I[CDATA[<HTML><BODY>I didn’t earn any interest this
month. Can you please tell me what | need to do to earn interest on this
account?</BODY></HTML>

J]></MSGBODY>
<INCIMAGES>N
<USEHTML>Y

</MAIL>
</MAILRS>
</MAILTRNRS>

9.2.5.1 E-Mail Synchronization Example

In the following example, the client has not yet received the reply to the e-mail sent in the
previous example, so its <TOKEN> is one less than the server’s. The server replies by giving the
current <TOKEN> and the missed response.

<MAI LSYNCRQ>
<TOKEN>101
<REJECTI FM SSI NG>N
<I NCI MAGES>N

134 9.2 E-Mail Messages

<USEHTML>Y
</ MAI LSYNCRQ>

<MAI LSYNCRS>
<TOKEN>102
<MAI LTRNRS>

<TRNUI D>0 <l-- server initiated response -->
<STATUS>

<CODE>0
<SEVERI TY>| NFO
</ STATUS>
<MAl LRS>
<MAI L>
<USERI D>123456789
<DTCREATED>19960307
<FROV>Noel ani Federal Savings
<TO>Janes Hackl eman
<SUBJECT>Re: What do | need to earn interest?

. <MSGBODY>><! [CDATA[<HTM.><BODY>You need to mai ntain $1000 in
this account to earn interest. Because your bal ance was only $750 this
nonth, no interest was earned. You could also switch to our new Checki ng
Extra plan that always pays interest. Call us or check our web page
http://ww. fi.com check-plans.htm for nore information.

Si ncerely,
Cust onmer Servi ce Depart nent

Origi nal nessage:

| didn’t earn any interest this month. Can you please tell me what |
need to do to earn interest on this account?</BODY></HTML>

[I></MSGBODY>
<INCIMAGES>N
<USEHTML>Y

</MAIL>

</MAILRS>
</MAILTRNRS>

</MAILSYNCRS>

OFX 1.5.1 Specification 11/23/98 135

9.3 Get HTML Page

Some responses contain values that are URLs intended to be separately fetched by clients.
Clients can use their own HTTP libraries to perform this fetch outside of the OFX specification.
However, to insulate clients against changes in transport technology, and to allow for fetches that
require the protection of an authenticated signon by a specific user, OFX defines a transaction
roughly equivalent to an HTTP Get. Any MIME type can be retrieved, including images as well
as HTML pages.

9.3.1 MIME Get Request and Response <GETMIMERQ>
<GETMIMERS>

The following table lists the components of a request:

Tag Version @ Description

<GETMIMERQ> Get-MIME-request aggregate
<URL> V1only | URL, URL
<URL2> V2only | URL, URL2

</GETMIMERQ>

The response simply echoes the URL. The actual response, whether HTML, an image, or some
other type, is always sent as a separate part of the file using multi-part MIME.

Tag Version | Description

<GETMIMERS> Get-MIME-response aggregate
<URL> V1only URL, URL
<URL2> V2 only URL, URL2

</GETMIMERS>

136 9.3 Get HTML Page

9.3.1.1 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2019 Duplicate request (ERROR)
16502 Invalid URL (ERROR)
16503 Unable to get URL (ERROR)

9.3.2 MIME Example

A request:

<GETM METRNRQ>
<TRNUI D>54321
<GETM MERQ>
<URL>http://ww. fi.com apage. htm
</ GETM MERQ>
</ GETM METRNRQ>

A response — the full file is shown here to illustrate the use of multi-part MIME:

HTTP 1.0 200 K

Content-Type: multipart/x-mixed-replace; boundary =--boundary—

--boundary--

Content-Type: application/x-ofx
Content-Length: 8732

OFXHEADER:100
DATA:OFXSGML
VERSION:102
SECURITY:TYPE1
ENCODING:USASCII

<OFX>
<l-- signon not shown
message set wrappers not shown -->
<GETMIMETRNRS>
<TRNUID>54321
<STATUS>
<CODE>0
<SEVERITY>INFO

OFX 1.5.1 Specification 11/23/98

137

</ STATUS>
<GETM MERS>
<URL>http://ww. fi.conlapage. ht n
</ GETM MERS>
</ GETM METRNRS>
</ OFX>

--boundary- -
Cont ent - Type: text/htni
<HTM_>
<l-- standard HTM. page -->
</ HTML>

--boundary- -

138 9.3 Get HTML Page

9.4 E-Mail Message Set Profile Information

If either or both of the messages in the e-mail message set are supported, the following aggregate
must be included in the profile <MSGSETLIST> response.

Tag
<EMAILMSGSET>
<EMAILMSGSETV1>
<MSGSETCORE>
</MSGSETCORE>
<MAILSUP>
<GETMIMESUP>
</[EMAILMSGSETV1>
<EMAILMSGSETV2>
<MSGSETCORE>
</MSGSETCORE>
<MAILSUP>
<GETMIMESUP>
</[EMAILMSGSETV2>

</EMAILMSGSET>

Description
E-mail-message-set-profile-information aggregate
Opening tag for V1 of the message set profile information

Common message set information, defined in Chapter 7, "FI Profile

Y if server supports generic e-mail message, Boolean

Y if server supports get MIME message, Boolean

Opening tag for V2 of the message set profile information

Common message set information, defined in Chapter 7, "FI Profile"

Y if server supports generic e-mail message, Boolean

Y if server supports get MIME message, Boolean

OFX 1.5.1 Specification

11/23/98

139

140 9.4 E-Mail Message Set Profile Information

CHAPTER 10 RECURRING TRANSACTIONS

OFX enables users to automate transactions that occur on a regular basis. Recurring transactions
are useful when a customer has payments or transfers, for example, that repeat at regular
intervals. The customer can create a “model” at the server for automatic generation of these
instructions. The model in turn creates payments or transfers until it is canceled or expires. After
the user creates a recurring model at the server, the server can relieve the user from the burden of
creating these transactions; it generates the transactions on its own, based on the operating
parameters of the model.

10.1 Creating a Recurring Model

The client must provide the following information to create a model:
0 Type of transaction generated by the model (payment or transfer)
O Frequency of recurring transaction

O Total number of recurring transactions to generate

0 Service-specific information, such as transfer date, payment amount, payee address

The model creates each transaction some time before its due date, usually thirty days. This
allows the user to retrieve the transactions in advance of posting. This also gives the user the
opportunity to modify or cancel individual transactions without changing the recurring model
itself.

When a model is created, it can generate several transactions immediately. The model does not
automatically return responses for the newly created transactions. It returns a response only to
the request that was made to create the model. For this reason, clients should send a
synchronization request along with the request to create a model. This allows the server to return
the newly created transaction responses, as well as the response to the request to set up a new
model.

OFX 1.5.1 Specification 11/23/98 141

10.2 Recurring Instructions <RECURRINST>

The Recurring Instructions aggregate is used to specify the schedule for a repeating instruction.
It is passed to the server when a recurring transfer or payment model is first created.

Tag Description
<RECURRINST> Recurring-Instructions aggregate
<NINSTS> Number of instructions

If this tag is absent, the schedule is open-ended, N-3
<FREQ> Frequency, see section 10.2.1

</RECURRINST>

10.2.1 Values for <FREQ>

Value Description

WEEKLY Weekly
BIWEEKLY Biweekly
TWICEMONTHLY | Twice a month

MONTHLY Monthly
FOURWEEKS Every four weeks
BIMONTHLY Bimonthly
QUARTERLY Quarterly

SEMIANNUALLY | Semiannually
ANNUALLY Annually

Rules for calculating recurring dates of WEEKLY, BIWEEKLY, and TWICEMONTHLY are as
follows:

0O WEEKLY = starting date for first transaction, starting date + 7 days for the second
0 TWICEMONTHLY = starting date for first, starting date + 15 days for the second
O BIWEEKLY = starting date for first, starting date + 14 days for the second

142 10.2 Recurring Instructions <RECURRINST>

Examples:
Start date of May 2: next transaction date for WEEKLY is May 9; TWICEMONTHLY is May 17; next
transfer date for BIWEEKLY is May 16.

Start date of May 20: next date for WEEKLY is May 27; TWICEMONTHLY is June 4; next date for
BIWEEKLY is June 3.

TWICEMONTHLY recurring transactions will occur each month on those days adjusting for weekends
and holidays. BIWEEKLY will occur every 14 days.

10.2.2 Examples

The following example illustrates the creation of a repeating payment. The payment repeats on a
monthly basis for 12 months. All payments are for $395.

The request:

<RECPMIRQ>
<RECURRI NST>
<NI NSTS>12
<FREQ>MONTHLY
</ RECURRI NST>
<PMTI NFO>
<BANKACCTFROV>
<BANKI D>555432180
<ACCTI D>763984
<ACCTTYPE>CHECKI NG
</ BANKACCTFROV>
<TRNAMI>395. 00
<PAYEEI D>77810
<PAYACCT>444- 78- 97572

<DTDUE>19971115
<MEMO>>Aut o | oan paynent
</ PMI'l NFC>
</ RECPMIRQ>

OFX 1.5.1 Specification 11/23/98 143

The response includes the <RECSRVRTID> that the client can
use to cancel or modify the model:

<RECPMTRS>
<RECSRVRT| D>387687138
<RECURRI NST>
<NI NSTS>12
<FREQ>MONTHLY

</ RECURRI NST>
<PMT|l NFO>
<BANKACCTFROW>
<BANKI D>555432180
<ACCTI D>763984
<ACCTTYPE>CHECKI NG
</ BANKACCTFROW>
<TRNAMT>395. 00
<PAYEEI D>77810
<PAYACCT>444- 78- 97572
<DTDUE>19971115
<MEM>>Aut 0 | oan paynent
</ PMI'l NFC>
</ RECPMIRS>

144 10.2 Recurring Instructions <RECURRINST>

10.3 Retrieving Transactions Generated by a Recurring
Model

Once created, a recurring model independently generates instructions. Since the client has not
directly generated these transactions, the client has no record of their creation. To enable users to
modify and/or cancel pending instructions, the client must use data synchronization in order to
retrieve these transactions.

The client has two purposes for synchronizing state with the server with respect to recurring
models:

O Retrieve any added, modified, or canceled recurring models

O Retrieve any added, modified, or canceled transactions generated by any models

The client must be able to synchronize with the state of any models at the server, as well as the
state of any transactions generated by the server.

10.4 Modifying and Canceling Individual Transactions

Once created and retrieved by the customer, recurring payments and transfers are almost
identical to customer-created payments or transfers. As with ordinary payments or transfers,
you can cancel or modify transactions individually. However, because servers generate these
transfers, they are different in the following respects:

0 Recurring transactions must be retrieved as part of a synchronization request.

0 Recurring transactions are related to a model. A server can modify or cancel transactions if
the model is modified or canceled.

10.5 Modifying and Canceling Recurring Models

A recurring model can be modified or canceled. When a model is modified, all transactions that
it generates in the future will change as well. The client can indicate whether transactions that
have been generated, but have not been sent, should be modified as well. The actual elements
within a transaction that can be modified differ by service. See the recurring sections within
Chapter 11, "Banking," and Chapter 12, "Payments,” for details. When a model is cancelled, the
server cancels any transactions that it has not yet sent.

OFX 1.5.1 Specification 11/23/98 145

10.5.1 Examples

Canceling a recurring payment model requires the client to pass the <RECSRVRTID> of the
model. The client requests that pending payments also be canceled. The server cancels the model
immediately and notifies the client that both the model and any scheduled payments were

canceled.

The request:

<RECPMICANCRQ>
<RECSRVRTI D>387687138
<CANPENDI NG>Y

</ RECPMICANCRQ>

The response:

<RECPMI' CANCRS>
<RECSRVRTI D>387687138
<CANPENDI NG>Y

</ RECPMI CANCRS>

The server also cancels any payments that have been generated but not executed. In the example
shown above, the client would not learn of this immediately. To receive notification that the
model and all generated payments were canceled, the client would need to include a
synchronization request in the file. The following example illustrates this alternate approach.

146

10.5 Modifying and Canceling Recurring Models

The request file now includes a synchronization request:

<RECPMTCANCRQ>
<RECSRVRTI D>387687138
<CANPENDI NG>Y
</ RECPMTCANCRQ>
<PMTSYNCRQ>
<TOKEN>12345
<REJECTI FM SSI NG>N
<BANKACCTFROV>
<BANKI D>123432123
<ACCTI D>516273
<ACCTTYPE>CHECKI NG
</ BANKACCTFROV>
</ PMTSYNCRQ>

OFX 1.5.1 Specification 11/23/98

147

The response file now contains two responses (assuming one payment was pending),
one for the canceled model and one for the canceled payment.

<RECPMI' CANCRS>
<RECSRVRTI| D>387687138
<CANPENDI NGY
</ RECPMI'CANCRS>
<PMTI'SYNCRS>
<TOKEN>3247989384
<BANKACCTFROW>
<BANKI D>123432123
<ACCTI D>516273
<ACCTTYPE>CHECKI NG
</ BANKACCTFROW>
<PMI'TRNRS>
<TRNUI D>10103
<STATUS>
<CODE>0
<SEVERI TY>I NFO
</ STATUS>
<PMI'CANCRS>
<SRVRTI D>1030155
</ PMI'CANCRS>
</ PMTTRNRS>
</ PMTSYNCRS>

148

10.5 Modifying and Canceling Recurring Models

CHAPTER 11 BANKING

OFX enables financial institution (FI) customers to keep their finances up-to-date and to manage
their bank accounts conveniently in several ways. Customers can download transactions and
update account balances on a daily basis. They can retrieve a closing statement that contains the
same information that they are accustomed to seeing on a paper statement. They can transfer
funds between accounts at a financial institution, either immediately upon going online or on a
regular schedule. Customers can schedule transfers between accounts on a recurring basis and
can transfer funds between accounts at different financial institutions. If necessary, customers
can request a wire funds transfer. OFX also enables requests to stop payment on pending checks.

Using customer notification, an FI can notify customers of important events regarding their
accounts, such as returned checks or deposits.

11.1 Consumer and Business Banking

OFX supports banking for both consumers and businesses. Some customers might use some
areas more heavily within OFX Banking (such as credit card download); other areas might be
more appropriate for businesses (such as wire transfers). Yet all of the functionality defined for
Banking is appropriate to some extent for both consumer and business applications.

11.2 Credit Card Data
Credit card data is available to OFX clients through the statement download facility. Statement

download provides a way to download credit card transaction data and balances on an as-
needed basis. Statement closing information can be made available to clients as well.

11.3 Common Banking Aggregates

This section describes several aggregates used throughout the Banking portion of OFX.

OFX 1.5.1 Specification 11/23/98 149

11.3.1 Banking Account <BANKACCTFROM> and <BANKACCTTO>

OFX uses the Banking Account aggregates to identify an account at an FI. The aggregates contain
enough information to uniquely identify an account for the purposes of statement download, bill
payment, and funds transfer. <CCACCTFROM?> identifies credit card accounts; see section

Tag Description
<BANKACCTFROM> Bank-account-from aggregate

<BANKID> Bank identifier, A-9
Use of this field by country:
COUNTRY Interpretation
BEL Bank code
CAN Routing and transit number
CHE Clearing number
DEU Bankleitzahl
ESP Entidad
FRA Banque
GBR Sort code
ITA ABI
NLD Not used (field contents ignored)
USA Routing and transit number

<BRANCHID> Branch identifier. May be required for some non-US banks, A-
22
Use of this field by country:
COUNTRY Interpretation
BEL Not present
CAN Not present
CHE Not present
DEU Not present
ESP Oficina
FRA Agence
GBR Not present
ITA CAB
NLD Not present
USA Not present

<ACCTID> Account number, A-22

150 11.3 Common Banking Aggregates

Tag Version Description

<ACCTTYPE> V1only | Type of account, see section 11.3.1.2
<ACCTTYPE2> V2only | Type of account, see section 11.3.1.2
<ACCTKEY> Checksum, A-22

Use of this field by country:

COUNTRY Interpretation

BEL Check digits
CAN Not present
CHE Not present
DEU Not present
ESP D.C.

FRA Clé

GBR Not present
ITA CIN

NLD Not present
USA Not present

</BANKACCTFROM>

OFX 1.5.1 Specification 11/23/98 151

Tag Version | Description
<BANKACCTTO> Bank-account-to aggregate
<BANKID> Bank identifier, A-9
Use of this field by country:
COUNTRY Interpretation
BEL Bank code
CAN Routing and transit number
CHE Clearing number
DEU Bankleitzahl
ESP Entidad
FRA Banque
GBR Sort code
ITA ABI
NLD Not used (field contents ignored)
USA Routing and transit number
<BRANCHID> Branch identifier. May be required for some banks, A-22
Use of this field by country:
COUNTRY Interpretation
BEL Not present
CAN Not present
CHE Not present
DEU Not present
ESP Oficina
FRA Agence
GBR Not present
ITA CAB
NLD Not present
USA Not present
<ACCTID> Account number, A-22
<ACCTTYPE> V1only | Type of account, see section 11.3.1.2
<ACCTTYPE2> V2 only | Type of account, see section 11.3.1.2
<ACCTKEY> Checksum, A-22
Use of this field by country:
152 11.3 Common Banking Aggregates

Tag Version = Description
COUNTRY Interpretation
BEL Check digits
CAN Not present
CHE Not present
DEU Not present
ESP D.C.
FRA Clé
GBR Not present
ITA CIN
NLD Not present
USA Not present
<EXTBANKACCTTO> V2 only | Extended bank account-to information aggregate. This
aggregate is only present when <BANKACCTTO> appears
within the Bill Payment message set. See section 11.3.1.1.
Presence of this field by country:
COUNTRY Interpretation
BEL Not present
CAN Not present
CHE Required for payments and payees
DEU Required for payments and payees
ESP Not present
FRA Not present
GBR Not present
ITA Required for payments and payees
NLD Not present
USA Not present
</[EXTBANKACCTTO>
</BANKACCTTO>
OFX 1.5.1 Specification 11/23/98 153

11.3.1.1 Extended Banking Account Information <EXTBANKACCTTO>

The <EXTBANKACCTTO> aggregate contains additional information used to identify an
account being used for a payment transfer and payee requests. It only appears within
<BANKACCTTO> aggregates that are used within the Bill Payment message set, and not inside
any version 1 message sets. The <EXTBANKACCTTO> aggregate is only used if COUNTRY is

CHE, DEU or ITA.

Tag
<EXTBANKACCTTO>

<BANKNAME>

<BANKBRANCH>

<BANKCITY>

</[EXTBANKACCTTO>

<BANKPOSTALCODE>

<CHE.PTTACCTID>

Version | Description

V2 only | Extended Bank-account-to aggregate

Bank name, A-32 (mandatory if COUNTRY = CHE, DEU or
ITA)

Bank branch name, A-32 (mandatory if COUNTRY = ITA)
Bank branch city, A-32 (mandatory if COUNTRY = CHE)

Bank branch postal code, A-11 (mandatory if COUNTRY =
CHE)

PTT account number for indirect payments, A-9 (optional if
COUNTRY = CHE)

11.3.1.2 Account Types for <ACCTTYPE> and <ACCTTYPE2> Elements

Type Version Description
CHECKING Checking
SAVINGS Savings
MONEYMRKT Money Market
CREDITLINE Line of credit
CMA <ACCTTYPE2> only Cash Management Account
154 11.3 Common Banking Aggregates

11.3.2 Credit Card Account <CCACCTFROM> and <CCACCTTO>

OFX uses the Credit Card Account aggregate to identify a credit card account at an Fl. The
aggregate contains enough information to uniquely identify an account for the purposes of
statement downloads and funds transfer. It is not necessary to support the Credit Card Message

Set in order to use the Credit card account aggregate.

Tag Description
<CCACCTFROM> Credit-card-account-from aggregate
<ACCTID> Account number, A-22
<ACCTKEY> Checksum for international banks, A-22
</CCACCTFROM>

The <CCACCTTO> aggregate contains the same elements.

OFX 1.5.1 Specification 11/23/98 155

11.3.3 Bank Account Information <BANKACCTINFO>

OFX uses the bank account information aggregate to download account information from an FI.
It includes account number specification in <BANKACCTFROM?> as well as the status of the

service.

Tag

<BANKACCTINFO>
<BANKACCTFROM>
</BANKACCTFROM>

<SUPTXDL>

<XFERSRC>

<XFERDEST>

<SVCSTATUS>

<SVCSTATUS2>

<REASON>

</BANKACCTINFO>

Version

V1only

V2 only

V2 only

Description
Bank-account-information aggregate

Bank-account-from aggregate

Y if account supports transaction detail downloads, N if it is
balance-only, Boolean

Y if account is enabled as a source for an intrabank or
interbank transfer, Boolean

Y if account is enabled as a destination for an intrabank or
interbank transfer, Boolean

Status of the account

AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

REJECTED = Rejected

This tag is only relevant if <SVCSTATUS2>="REJECTED”,
A-255

156

11.3 Common Banking Aggregates

11.3.4 Credit Card Account Information <CCACCTINFO>

OFX uses the credit card account information aggregate to download account information from
an Fl. It includes credit card number specification in <CCACCTFROM?> as well as the status of

the service.

Tag

<CCACCTINFO>
<CCACCTFROM>
</CCACCTFROM>

<SUPTXDL>

<XFERSRC>

<XFERDEST>

<SVCSTATUS>

<SVCSTATUS2>

<REASON>

</CCACCTINFO>

Version

V1only

V2 only

V2 only

Description
Credit-card-account-information aggregate

Credit-card-account-from aggregate

Y if account supports transaction detail downloads, N if it is
balance-only, Boolean

Y if account is enabled as a source for an intrabank or
interbank transfer, Boolean

Y if account is enabled as a destination for an intrabank or
interbank transfer, Boolean

Status of the account

AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

AVAIL = Available, but not yet requested
PEND = Requested, but not yet available
ACTIVE = In use

REJECTED = Rejected

This tag is only relevant if <SVCSTATUS2>="REJECTED”,
A-255

OFX 1.5.1 Specification

11/23/98 157

11.3.5 Transfer Information <XFERINFO>

Many of the transfer requests and responses use an <XFERINFO> aggregate. This aggregate
identifies accounts that are part of the transfer, amount of money to be transferred, and the date
of the transfer.

158 11.3 Common Banking Aggregates

Tag
<XFERINFO>

Account-from options. Choose
either <BANKACCTFROM?> or
<CCACCTFROM>.

<BANKACCTFROM>
</BANKACCTFROM>
-or-

<CCACCTFROM>

</CCACCTFROM>

Account-to options. Choose
either <BANKACCTTO> or
<CCACCTTO>.

<BANKACCTTO>
</BANKACCTTO>
-or-

<CCACCTTO>

</CCACCTTO>

<TRNAMT>

<DTDUE>

<DTAVAIL>

<MEMO2>

</XFERINFO>

Version

V2 only

V2 only

Description

Transfer-information aggregate

Account-from aggregate, see section 11.3.1

Credit-card-account-from aggregate, see section 11.3.2

Account-to aggregate, see section 11.3.1

Credit-card-account-to aggregate, see section 11.3.2

Amount of the transfer, amount
This amount should be specified as a positive number.

Date that the transfer is to be sent. If the client does not
specify <DTDUE>, the transfer occurs as soon as possible.
<DTDUE> is required for scheduled or repeating transfers,
datetime

The value date when the funds must be available in
BANKACCTTO. This can potentially be set independently
of DTDUE, datetime

Note that for some countries (notably Italy), DTAVAIL can
be a date in the past. This field is only supported by the
server if the SUPPORTDTAVAIL tag of the Intrabank
transfer profile is true (see section 11.13.2.2).

This tag is not used in the US.

Associated text content for the transfer, memo2

OFX 1.5.1 Specification

11/23/98 159

11.3.6 Transfer Processing Status <XFERPRCSTS>

The Transfer Processing Status aggregate contains the curren